【】(数论,gcd循环节)

 题目

N,M大小为1e5

思考

通过观察,实际上我们可以把问题转化为A_{i}B_{i},B_{(i+N)\%M},B_{(i+2N)\%M}\cdotsB_{(i+kN)\%M}

 比较有多少个相等,有多少个大于,有多少个小于,需要在O(logn)的复杂度中求解这个问题

什么时候,B_{(i+kN)\%M}进入循环呢?也就是i\equiv(i+kN)(modM)kN\%M==0

显然,KN==LCM(N,M),所以只需要在LCM的长度中求解上述问题就好了

因为LCM可能还是会超时,所以再把范围缩减到M,找到M中和A_{i}相关联的B

在LCM的长度中,M中的哪些位置出现了呢?

 所以可以在O(N)的复杂度找到A_{i}对应的B,然后采取排序二分的方式,就能够解决上述问题

代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5+1;
typedef long long ll;
ll win=0,lose=0,draw=0;
ll g;
vector<vector<int>> divideB;
int gcd(int a,int b){
    if(b==0)
        return a;
    return gcd(b,a%b);
}
void solve(vector<int>& ve,int target){
    //stable_sort(ve.begin(),ve.end());
    auto lower=lower_bound(ve.begin(),ve.end(),target);
    auto upper=upper_bound(ve.begin(),ve.end(),target);
    int low=lower-ve.begin()-1;
    int high=upper-ve.begin();
    int cap=ve.size();
    win+=low+1;
    lose+=cap-high;
    draw+=high-low-1;
}
int main(){
    freopen("cardgame.in","r",stdin);
    freopen("cardgame.out","w",stdout);
    cin.tie(0);
    ios::sync_with_stdio(0);
    int N,M;
    cin>>N>>M;
    int A[N+1],B[M+1];
    g=gcd(N,M);
    for(int i=0;i<N;i++){
        cin>>A[i];
    }
    divideB.resize(g);
    for(int i=0;i<M;i++){
        cin>>B[i];
        divideB[i%g].push_back(B[i]);
    }
    for (int i = 0; i < g; i++) {
        sort(divideB[i].begin(), divideB[i].end());
    }
    for(int i=0;i<N;i++){
        solve(divideB[i%g],A[i]);
    }
    win*=g;
    lose*=g;
    draw*=g;
    cout<<win<<'\n'<<lose<<'\n'<<draw<<'\n';
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值