数论之指数和原根

索引

记号

(1) φ ( m ) \varphi \left( m \right) φ(m) m m m的欧拉函数.
(2) [ x ] \left[ x \right] [x]表示对实数 x x x取整数部分, { x } \left\{ x \right\} { x}表示对实数 x x x取小数部分. 有 x = [ x ] + { x } x=\left[ x \right]+\left\{ x \right\} x=[x]+{ x}.

定义1(补充说明见定理12) 设 m ∈ Z > 1 m\in { {\mathbb{Z}}_{>1}} mZ>1, a ∈ Z a\in \mathbb{Z} aZ, gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, 记 γ ( a , m ) = min ⁡ { x ∈ Z > 0 : a x ≡ 1     m o d   m } . \gamma \left( a, m \right) =\min \left\{ x\in { {\mathbb{Z}}_{>0}}:{ {a}^{x}}\equiv 1\text{ }\bmod m \right\}. γ(a,m)=min{ xZ>0:ax1 modm}. γ \gamma γ a a a对模 m m m的指数(order/period). 若 γ = φ ( m ) \gamma =\varphi \left( m \right) γ=φ(m), 则称 a a a为模 m m m的一个原根(primitive root of unity).


命题2 定义1中 a a a对模 m m m的指数 γ \gamma γ一定是存在的, 且成立 0 < γ ≤ φ ( m ) 0 \lt \gamma \le \varphi \left( m \right) 0<γφ(m).

证明 由于 gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1, 由欧拉定理, 成立
a φ ( m ) ≡ 1     m o d   m . { {a}^{\varphi \left( m \right)}}\equiv 1\text{ }\bmod m. aφ(m)1 modm.
其中 φ ( m ) ≥ 1 \varphi \left( m \right)\ge 1 φ(m)1. 记
S = { n ∈ Z : 1 ≤ n ≤ φ ( m ) ,   a n ≡ 1     m o d   m } . S=\left\{ n\in \mathbb{Z}:1\le n\le \varphi \left( m \right),\text{ }{ {a}^{n}}\equiv 1\text{ }\bmod m \right\}. S={ nZ:1nφ(m), an1 modm}.
φ ( m ) ∈ S   ⇒   S ≠ ∅ \varphi \left( m \right)\in S\text{ }\Rightarrow \text{ }S\ne \varnothing φ(m)S  S=. 基于此, ∀ n ∈ S \forall n\in S nS, n ∈ Z n\in \mathbb{Z} nZ 1 ≤ n ≤ φ ( m ) 1\le n\le \varphi \left( m \right) 1nφ(m), inf ⁡ S \inf S infS存在. 成立
0 < 1 = inf ⁡ S = min ⁡ S = γ ≤ φ ( m ) . 0<1=\inf S=\min S=\gamma \le \varphi \left( m \right). 0<1=infS=minS=γφ(m).

例子3
(1) 2 2 2对模 7 7 7的指数是3; 2 2 2不是模 7 7 7的原根.
(2) 2 2 2对模 11 11 11的指数是 10 10 10; 2 2 2是模 11 11 11的原根.

证明
(1) 因为 2 1 = 2 { {2}^{1}}=2 21=2, 2 2 = 4 { {2}^{2}}=4 22=4, 2 3 = 8 ≡ 1  mod7 { {2}^{3}}=8\equiv 1\text{ mod7} 23=81 mod7, 所以 γ ( 2 , 7 ) = 3 \gamma \left( 2,7 \right)=3 γ(2,7)=3. 由于 φ ( 7 ) = 6 ≠ 3 \varphi \left( 7 \right)=6\ne 3 φ(7)=6=3, 因此 2 2 2不是模 7 7 7的原根.

(2) 因为
n ∈ Z > 0 1 2 3 4 5 6 7 8 9 10 2 n     m o d   11 2 4 8 16 ≡ 5 32 ≡ − 1 64 ≡ − 2 128 ≡ 7 256 ≡ 3 512 ≡ 6 1024 ≡ 1 \begin{matrix} n\in { {\mathbb{Z}}_{>0}} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ { {2}^{n}}\text{ }\bmod 11 & 2 & 4 & 8 & 16\equiv 5 & 32\equiv -1 & 64\equiv -2 & 128\equiv 7 & 256\equiv 3 & 512\equiv 6 & 1024\equiv 1 \\ \end{matrix} nZ>02n mod111224384165532166427128782563951261010241
γ ( 2 , 11 ) = 10 = φ ( 11 ) \gamma \left( 2,11 \right)=10=\varphi \left( 11 \right) γ(2,11)=10=φ(11), 于是 2 2 2是模11的原根.

例子4  5 5 5是模 3 , 6 , 9 , 18 3,6,9,18 3,6,9,18的原根.

证明
5 n 5 2 = 25 5 3 = 125 5 4 = 625 5 5 = 3125 5 6 = 15625 φ ( 3 ) = 2   m o d   3 1 φ ( 6 ) = 2   m o d   6 1 φ ( 9 ) = 6   m o d   9 7 8 4 2 1 φ ( 18 ) = 6   m o d   18 7 17 13 11 1 \begin{matrix} {} & { {5}^{n}} & { {5}^{2}}=25 & { {5}^{3}}=125 & { {5}^{4}}=625 & { {5}^{5}}=3125 & { {5}^{6}}=15625 \\ \varphi \left( 3 \right)=2 & \bmod 3 & 1 & {} & {} & {} & {} \\ \varphi \left( 6 \right)=2 & \bmod 6 & 1 & {} & {} & {} & {} \\ \varphi \left( 9 \right)=6 & \bmod 9 & 7 & 8 & 4 & 2 & 1 \\ \varphi \left( 18 \right)=6 & \bmod 18 & 7 & 17 & 13 & 11 & 1 \\ \end{matrix} φ(3)=2φ(6)=2φ(9)=6φ(18)=65nmod3mod6mod9mod1852=25117753=12581754=62541355=312521156=1562511


φ ( 6 ) = φ ( 2 × 3 ) = φ ( 2 ) × φ ( 3 ) = 1 × 2 = 2 , 9 = 3 2 ,   φ ( 9 ) = 9 × ( 1 − 1 3 ) = 6 , 18 = 2 × 9 ,   gcd ⁡ ( 2 , 9 ) = 1 ,   φ ( 18 ) = φ ( 2 ) × φ ( 9 ) = 6. \begin{aligned} & \varphi \left( 6 \right)=\varphi \left( 2\times 3 \right)=\varphi \left( 2 \right)\times \varphi \left( 3 \right)=1\times 2=2, \\ & 9={ {3}^{2}},\text{ }\varphi \left( 9 \right)=9\times \left( 1-\frac{1}{3} \right)=6, \\ & 18=2\times 9,\text{ }\gcd \left( 2,9 \right)=1,\text{ }\varphi \left( 18 \right)=\varphi \left( 2 \right)\times \varphi \left( 9 \right)=6. \\ \end{aligned} φ(6)=φ(2×3)=φ(2)×φ(3)=1×2=2,9=32, φ(9)=9×(131)=6,18=2×9, gcd(2,9)=1, φ(18)=φ(2)×φ(9)=6.
不能按 φ ( 9 ) = φ ( 3 × 3 ) = φ ( 3 ) 2 = 4 \varphi \left( 9 \right)=\varphi \left( 3\times 3 \right)=\varphi { {\left( 3 \right)}^{2}}=4 φ(9)=φ(3×3)=φ(3)2=4计算 φ ( 9 ) \varphi \left( 9 \right) φ(9), 因为 3 3 3 3 3 3不互素, 而应用 φ ( m 1 m 2 ) = φ ( m 1 ) φ ( m 2 ) \varphi \left( { {m}_{1}}{ {m}_{2}} \right)=\varphi \left( { {m}_{1}} \right)\varphi \left( { {m}_{2}} \right) φ(m1m2)=φ(m1)φ(m2)的前提是 gcd ⁡ ( m 1 , m 2 ) = 1 \gcd \left( { {m}_{1}},{ {m}_{2}} \right)=1 gcd(m1,m2)=1.

定理5 设 m ∈ Z > 1 m\in { {\mathbb{Z}}_{>1}} mZ>1, a ∈ Z a\in \mathbb{Z} aZ, gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1. 设 a a a对模 m m m的指数是 δ \delta δ. 成立:
(1) 1 , a , ⋯   , a δ − 1 1,a,\cdots ,{ {a}^{\delta -1}} 1,a,,aδ1对模 m m m两两不同余.
(2) 设 γ , γ ′ ∈ Z > 0 \gamma ,\gamma '\in { {\mathbb{Z}}_{>0}} γ,γZ>0, a γ ≡ a γ ′     m o d   m   ⇔   y ≡ y ′     m o d   δ { {a}^{\gamma }}\equiv { {a}^{\gamma '}}\text{ }\bmod m\text{ }\Leftrightarrow \text{ }y\equiv y'\text{ }\bmod \delta aγaγ modm  yy modδ. 特别地, a γ ≡ 1     m o d   m   ⇔   δ ∣ y { {a}^{\gamma }}\equiv 1\text{ }\bmod m\text{ }\Leftrightarrow \text{ }\left. \delta \right|y aγ1 modm  δy.
(3) δ ∣ φ ( m ) \left. \delta \right|\varphi \left( m \right) δφ(m).

证明
(1) 若 0 ≤ k < l ≤ δ − 1 0\le k<l\le \delta -1 0k<lδ1 a k ≡ a l     m o d   m { {a}^{k}}\equiv { {a}^{l}}\text{ }\bmod m akal modm, 则 a l − k ≡ 1     m o d   m { {a}^{l-k}}\equiv 1\text{ }\bmod m alk1 modm, 其中 l − k ≤ δ − 1 < δ l-k\le \delta -1<\delta lkδ1<δ,这与 δ \delta δ是指数矛盾, 因此 ∀ k , l ∈ { 0 , ⋯   , δ − 1 } \forall k,l\in \left\{ 0,\cdots ,\delta -1 \right\} k,l{ 0,,δ1}, 若 k ≠ l k\ne l k=l, 则 a k ≡ a l     m o d   m { {a}^{k}}\cancel{\equiv }{ {a}^{l}}\text{ }\bmod m ak al modm, 即 1 ,   a ,   ⋯   ,   a δ − 1 1,\text{ }a,\text{ }\cdots ,\text{ }{ {a}^{\delta -1}} 1, a, , aδ1 m m m两两不同余.

(2) 设 γ = δ q + r \gamma =\delta q+r γ=δq+r, 0 ≤ r < δ 0\le r<\delta 0r<δ, γ ′ = δ q ′ + r ′ \gamma '=\delta q'+r'

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值