目录
前言
人工智能(AI)后文出现用AI代替;
是一部机器像人一样进行感知,认知,决策,执行的人工程序或系统。
机器人——“最终想象”
范围
人工智能>机器学习>深度学习
人工智能 | 机器学习 | 深度学习 |
领域 | 一类方法 | 方法中的一个点 |
提示:以下是本篇文章人工智能正文内容,下面案例可供参考
一、绪论
简要概括人工智能的发展时间线
- 萌芽:
1943 人工神经网络和数学模型建立
1950 图灵提出——“图灵测试” ( eg.验证码系统)
- 启动期:
1956 人工智能诞生
- 消沉期:
1969 连接主义与符合主义消沉
- 突破期:
1975 BP算法开始研究,第五代计算机开始研制,半导体系统发展 人工智能开始逐渐突破
- 发展期:
1986 BP网络实现,神经网络得到广泛认知。计算机硬件能力快速提升,分布式网络降低了人工智能计算成本。
- 高速发展期:
2006 人工智能算法突破性发展
2010 人工智能应用场景开始增加
2012 人工智能商业化高速发展
人工智能三个层面
计算智能 | 能存能算(计算机具有快速计算和记忆的能力) eg. 深蓝(核心:暴力穷举) |
感知智能 | 能听会说,能看会认 类似于人的听觉,触觉,视觉等能力 |
认知智能 | 能理解,会思考 概念,意识,观念 eg.逻辑推理,知识理解,决策思考 |
AI+
体现在生活中的各个行业,方方面面
eg.金融,内容创作,机器人
以金融为例,支付宝是人工智能与金融结合的一个现实事例,其中信用积分一栏.可以当作周围人对使用者本人进行的打分,省时便捷的将一个人进行数字化(或许可以这么理解),通过积分将一个人的内在白表现出来,方便且准确.
AI进入生活 大大提高生活效率,丰富度也非常广泛,例如淘宝界面鲁班系统,根据个人喜好为每个人创作独一无二的界面海报(但是有时候会不太准确且缺乏新鲜感,个人对此的使用感受)
逻辑演绎&归纳总结
逻辑 | 概率 | |
主流技术 | 逻辑推理,知识工程(符号主义) | 机器学习 |
AI学派 | 模拟人的心智:使用符号逻辑和规则进行逻辑推理 (自上而下) | 贝叶斯:对事情发生的可能性进行概率推理(自上而下+自下而上) 联结主义:模拟脑结构:使用概率矩阵来识别和归纳模式(自下而上) |
代表方法 | 定理证明机 专家系统 | 朴素贝叶斯隐马尔科夫 神经网络 |
知识工程/专家系统
根据专家定义的知识和经验进行推理判断,模拟人类专家的决策过程解决问题 规则有限
人工制定规则
机器学习:通过数据自动学习的模型
eg.(决策数)(训练文档 邮件系统是否为垃圾邮件)
知识工程 | 基于手工设计规则 容易解释 系统建立费事 依赖性专家自主经验,难保证一致性准确性 |
机器学习 | 基于数据自动学习 减少人工繁杂工作,结果可能不宜解释 提高信息处理的效率且·准确率较高· 来源于真实数据,减少人工主观性,可信度高 |
机器学习应用技术领域:
计算机视觉 | 人脸识别,图像分类,视频监控 |
语音技术 | 语音识别,语音合成,声纹识别(智能音箱) |
自然语言处理 | 机器翻译,自动问答,文本生成 |
二、机器学习
常用:计算机系统能够利用经验提高自身性能
可操作定义:机器学习本质是一个基于经验数据的函数估计问题
统计学:提取重要模式趋势,并理解数据 从数据中学习。
1.什么是机器学习?
常用:计算机系统能够利用经验提高自身性能
可操作定义:机器学习本质是一个基于经验数据的函数估计问题
统计学:提取重要模式趋势,并理解数据 从数据中学习。
2.学什么?
1.有数据
2.有意义的模式(预测婴儿性别)
3.寻找近似解 问题是否有解析解
3.怎么学?
模型 问题建模
策略 从假设空间中学习
算法 根据目标函数求解最优模型的具体计算方法
数据标志:监督学习模型(样本具有标记) 预测数据
无监督学习模型 样本没有标记 从数据中学习模式,描述数据
半监督学习:部分数据标志已知,监督学习和无监督学习的混合
强化学习:数据标记未知,但知道与输出目标相关的反馈 决策类问题
数据分布:参数模型(数据分布的参数)
优点 | 数据需求少,训练快速 |
缺点 | 模型复杂度有限,与甚至目标函数拟合度小 |
非参数模型 (不对数据分布进行假设)
优点 | 对数据适应性强,可拟合不同函数形式 |
缺点 | 数据需求大 |
建模对象:判别模型:对已知输入X条件下输出的Y的条件分布P(x|y)建模
生成模型 :对输入XY联合分布P(X,Y)建模Y
三,深度学习
传统深度学习:人工设计特征
传统机器学习通过人工手机数据从手机的数据中选择设计特征,并用某种分类器训练和测试买这种方式需要耗费大量的时间精力和人力,且不具有一次成功的可能性.
深度学习时代中,有转机选择深度模型,交由机器来优化深度模型,与之前相比大大缩短了时间.
后深度学习时代,简化数据收集,并将选项二与优化模型都交给机器操作.
深度学习三个助推器:
大数据
算法
计算力
深度学习的"不能":
算法输出不稳定,容易被攻击
模型复杂度高,难以纠错和调试
模型层及复杂程度高,参数不透明
端到端训练方式对数据依赖性强,模型增量型差.
专注直观感知类问题,对开放推理问题无能为力. (鹦鹉只会模仿无人不知道含义)
人类知识无法有效进行监督,机器偏见难以避免.
总结及问题:
人工智能的目的是想让机器能像人类一样思考和解决问题,实现人工智能的方式可以采用机器学习的方法,而深度学习就是机器学习方法中的一种。深度学习应用了神经网络,神经网络蓬勃发展到今天,离不开算法、算力和数据三个要素的支撑。
深度学习有这么多的"不能",我们可以通过什么途径来减弱这些"不能"给结果带来的影响呢?