- 博客(13)
- 收藏
- 关注
原创 Detecting Deepfakes with Self-Blended Images(利用自融合图像检测深度伪造内容)
近年来,生成对抗网络(GAN)的快速发展使得生成逼真的面部图像成为可能。虽然这些技术为娱乐应用(如智能手机应用和电影)带来了创新,但也被恶意利用于制造虚假新闻或伪造证据等目的。因此,深度伪造(Deepfake)检测技术的研究变得至关重要。在本文中,我们提出了一种新的合成训练数据方法——自混合图像(Self-Blended Images,SBI),用于提高Deepfake检测的泛化能力。
2024-12-06 16:24:07
1257
原创 深度伪造检测:揭开 AI 造假的 “面纱”
在当今数字化时代,人工智能技术的飞速发展给我们的生活带来了诸多便利和创新,但同时也催生了一种极具威胁性的技术 —— 深度伪造**(Deepfake)。深度伪造利用深度学习算法生成高度逼真的虚假图像、视频或音频内容,这些虚假内容可以轻易地误导公众、损害个人声誉、破坏社会信任,甚至对国家安全构成严重威胁。因此,深度伪造检测技术(Deepfake Detection)**应运而生,成为计算机视觉领域中备受关注的研究热点。 Deepfake 是英文 “”(深度学习)和 “
2024-11-19 13:38:29
1605
原创 现代神经网络模型详解:从 AlexNet 到 DenseNet
从 AlexNet 到 DenseNet,神经网络模型的不断演变展示了深度学习领域的发展方向。每个模型的创新点和独特设计都推动了计算机视觉的进步。这些经典模型不仅为我们理解深度学习提供了重要的理论基础,还为实际应用中的模型设计提供了宝贵经验。
2024-11-16 19:37:17
1059
原创 机器学习之聚类算法
在机器学习中,聚类是一种无监督学习方法,广泛应用于数据分析、图像处理、推荐系统等领域。聚类的目标是将数据划分为若干组(簇),使得组内的样本尽可能相似,组间的样本尽可能不同。本文将详细介绍聚类的基本概念、常用算法及其理论基础。聚类的本质是发现数据中的潜在结构或模式,其目标是将数据集分为若干个不相交的子集(称为簇每个簇可能对应于数据中的某种潜在类别或概念。例如,在用户行为分析中,聚类可以帮助发现具有相似行为模式的用户群体;在图像分割中,可以将相似像素聚为一类,从而分割图像中的物体。
2024-11-15 16:19:04
859
原创 深度学习中的后门攻击详解:原理、形式与防御方法
后门攻击是指攻击者在模型的训练过程中,以某种方式在训练数据中嵌入特定的触发模式(Trigger),使得模型在接收到这种触发模式时表现出特定的错误行为,而在其他情况下,模型仍然正常工作。具体来说,攻击者在训练数据中添加带有特定触发条件的样本,使得模型在输入正常数据时能正常分类,但一旦输入的样本包含触发条件,模型就会产生预期的错误输出。这样的攻击非常隐蔽,难以察觉。深度学习中的后门攻击对模型的安全性构成了重大威胁,尤其是在模型广泛应用于安全敏感领域时。
2024-11-12 18:41:14
6484
原创 机器学习之回归算法
在机器学习的世界里,回归是解决预测问题的基本方法之一。回归模型的任务是学习输入变量(特征)与输出变量(目标)之间的映射关系,尤其是输出为连续值时,回归显得尤为重要。本文将结合经典的线性回归、多项式回归以及常用的正则化方法,详细讲解机器学习中的回归算法。本文详细介绍了回归问题中常用的模型和方法,从经典的线性回归、多项式回归,到应对过拟合的正则化方法(岭回归和套索回归),再到分类问题中的回归模型(Logistic 回归和 Softmax 回归)。undefined。
2024-11-07 19:25:06
1049
原创 对抗样本攻击
对抗样本攻击就是对图像加以扰动从而干扰图像分类器产生错误的判断。主要包括包括错误分类和源/目标错误分类。错误分类的目标意味着对手只希望输出分类是错误的,但并不关心新分类是什么。源/目标错误分类意味着对手想要更改原始属于特定源类的图像,以便将其分类为特定目标类。FGSM和PGD都是特性FGSMPGD迭代次数单步多步计算开销低高攻击强度相对较弱相对较强使用场景快速测试、实时应用强对抗性攻击、防御评估对抗样本生成公式xadvxϵ⋅sign∇xJxadv。
2024-11-06 16:23:57
1891
原创 机器学习——密度估计详解
密度估计是指从已知的观测数据x1x2⋯xNx1x2⋯xN中,推断出这些数据所服从的概率密度函数pxp(x)px。pxp(x)px开始是未知的,总的来说就是根据观测值能不能把这个密度函数猜出来。密度估计可以看做单类归类问题,其中真实的密度函数是一种理想的 “类别认知”,而我们通过算法和观测值所得到的估计密度函数则是对这种理想认知的一种近似或假设。
2024-11-05 18:17:46
1216
原创 《深入理解卷积神经网络:基于 Pytorch 的 CIFAR-10 图像分类实战》
卷积神经网络是一种专门用于处理具有网格结构数据(如图像)的深度学习模型。它通过卷积层、池化层和全连接层的组合,自动学习图像中的特征,并进行分类任务。使用交叉熵损失函数作为模型的损失函数,计算概率的sigmod函数封装在这个损失函数中,适用于多分类问题。优化器选择 Adam,它是一种自适应学习率的优化算法,可以自动调整学习率,加快收敛速度。
2024-11-05 15:30:53
1092
原创 深度学习环境配置:PyTorch 安装
在深度学习的实践中,选择合适的框架和环境配置至关重要。PyTorch 是一个灵活且功能强大的深度学习框架,广泛应用于学术研究和工业界。本文将详细介绍在Linux上配置 PyTorch 的步骤。通过以上步骤,你应该能够成功配置 PyTorch 深度学习环境。接下来,你可以开始你的深度学习项目。如果你有任何问题或遇到困难,欢迎在评论区留言。
2024-10-30 15:39:34
667
原创 机器学习之数据降维
数据降维是机器学习中的一个重要步骤,旨在减少数据集中的特征数量,同时尽量保留数据的主要信息。这一过程可以提高模型的性能、降低计算复杂性,并减少过拟合的风险。最小化样本点到投影超平面的距离:保证数据点在低维空间中的投影紧致,减少信息损失。最大化投影后样本的方差:在降维后的低维空间中,保留原始数据的主要方差(信息量)。通过这两个目标函数的优化,PCA 能够在降维的同时尽可能多地保留数据的特征。(信息量)。通过这两个目标函数的优化,PCA 能够在降维的同时尽可能多地保留数据的特征。
2024-10-29 18:49:55
2240
1
原创 机器学习之归类理论
在深度学习中,神经网络的卷积层等结构用于自动提取数据的特征。例如在图像分类任务中,卷积神经网络(CNN)通过卷积层提取图像的各种特征,这些特征可以看作是对图像对象的一种表示,类似于归类理论中的类表示。不同的卷积核提取不同的特征,这些特征组合起来可以对图像所属的类别进行判断,这与归类理论中通过多种特征来确定对象所属类别有相似之处。
2024-10-27 14:39:47
1023
原创 双指针之左右指针
一般来说左右指针初始化条件:left=0;right=n-1;(n为数组元素数量)通过左右指针的移动来解一些问题,下面举一些例子:leetcode 盛最多水的容器。总的来说,他是想让我们求一下规则矩形最大面积(其前提是不漏水)所以这道题就可以用左右指针来做。知道了height[left]和height[right]就可以算出来left和right之间的面积。class Solution {public: int maxArea(vector<int>& h..
2022-04-18 19:49:36
186
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅