深度伪造检测:揭开 AI 造假的 “面纱”

深度伪造检测:揭开 AI 造假的 “面纱”

前言

​ 在当今数字化时代,人工智能技术的飞速发展给我们的生活带来了诸多便利和创新,但同时也催生了一种极具威胁性的技术 —— 深度伪造**(Deepfake)。深度伪造利用深度学习算法生成高度逼真的虚假图像、视频或音频内容,这些虚假内容可以轻易地误导公众、损害个人声誉、破坏社会信任,甚至对国家安全构成严重威胁。因此,深度伪造检测技术(Deepfake Detection)**应运而生,成为计算机视觉领域中备受关注的研究热点。

什么是深度伪造?

​ Deepfake 是英文 “Deep learning”(深度学习)和 “Fake”(伪造)的混合词,是指利用深度学习技术,特别是生成对抗网络(GANs)等,这是 Deepfake 技术的核心。GANs 由生成器和判别器**(二分类器)**组成。生成器负责生成虚假的图像或视频,它学习真实数据的特征分布,并尝试生成与之相似的内容。判别器则负责判断输入的内容是真实的还是生成器生成的虚假内容。两者不断进行对抗训练,生成器逐渐提高生成内容的逼真度,直到判别器难以区分真假。
​ 如果将生成器比作画家,那么判别器可以比作艺术鉴赏家,艺术鉴赏家在欣赏完画作后会给出自己的评价和看法。
在这里插入图片描述

图1生成对抗网络

常用伪造方式

  1. FaceSwap:一种基于图形学的面部交换方法。通过稀疏检测面部特征点提取面部区域,利用这些特征点拟合 3D 模板模型,再将模型反向投影到目标图像,最后进行渲染、融合和颜色校正。
  2. DeepFakes:基于深度学习的面部替换方法。用两个具有共享编码器的自动编码器分别训练源脸和目标脸的重建,使用人脸检测器裁剪和对齐图像,将源脸的训练编码器和解码器应用于目标脸。
  3. Face2Face:面部重演系统,可将源视频的表情转移到目标视频,同时保持目标人物身份。
  4. NeuralTextures:基于 NeuralTextures 的渲染方法进行面部重演。利用原始视频数据学习目标人物的神经纹理和渲染网络,结合光度重建损失和对抗损失进行训练,使用基于补丁的 GAN - loss。

在这里插入图片描述

图2伪造方式

深度伪造检测

​ 深度伪造检测技术是为了对抗深度伪造(Deepfake)技术所带来的负面影响而发展起来的一种技术手段。本质上,它是一个二分类器,能够判断内容是真实的(Real)还是伪造的(Fake)。

在这里插入图片描述

图3深度伪造检测器

主流的检测器主要分为三类:朴素检测器(Naive Detector),空间检测器(Spatial Detector),频率检测器(Frequency Detector)

这三类检测器各有其特点和适用场景:

  • 朴素检测器:直接使用原始图像或视频帧作为输入,通过深度学习模型进行分类。优点是简单直接,但可能会忽略一些细微的伪造痕迹。
  • 空间检测器:关注图像或视频中的空间特征,如面部特征、纹理等。这类检测器能够捕捉到一些细微的空间异常,但可能对高质量的伪造内容效果有限。
  • 频率检测器:分析图像或视频的频率域特征,能够发现一些在空间域不易察觉的伪造痕迹。这类检测器对某些特定类型的伪造效果显著,但可能需要更多的计算资源。

参考

Rossler, Andreas, et al. “Faceforensics++: Learning to detect manipulated facial images.” Proceedings of the IEEE/CVF international conference on computer vision. 2019.
Yan, Zhiyuan, et al. “Deepfakebench: A comprehensive benchmark of deepfake detection.” arXiv preprint arXiv:2307.01426 (2023).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值