人才程序员
软件:C/C++ Qt CMake 数据结构 Linux网络。C++Opencv Python 前端(HTML、CSS....) 鸿蒙软件开发ArkTS 硬件:51单片机,esp系列(esp32、esp8266、esp32-s3),stm32、freertos。openharmony。可以带徒弟:C/C++ Python Lua STM32 esp32
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【python Numpy】处理np.nan类型的缺失值
(Not a Number)值的处理方式,可以帮助我们高效地进行数据清洗和缺失值处理。可以按行或列进行缺失值替换或删除。和其他函数,我们可以有效地检测、替换和删除缺失值。如果我们不想替换缺失值,而是希望删除这些值所在的元素,NumPy 提供了简单的删除方法。在数据处理中,缺失值的存在是一个常见问题。处理缺失值是数据分析和机器学习中的重要任务。如果我们想用数组的均值来填充缺失值,可以首先计算均值,再用。类型的缺失值,包括检测、替换和删除缺失值等常见操作。在处理缺失值时,通常我们希望用一个具体的值来替代。原创 2025-02-11 08:18:23 · 522 阅读 · 0 评论 -
【python opencv】Canny边缘检测
Canny边缘检测是一种广泛使用的图像处理技术,用于检测图像中的边缘。它通过多步骤的处理方法,能够有效地找到图像中物体的边缘,并且对于噪声的抑制效果较好。Canny边缘检测器的基本思想是,首先通过高斯滤波去噪,再利用梯度计算边缘强度,最后通过双阈值法和边缘连接等方法来优化边缘结果。简单来说,Canny边缘检测就像是在图像中寻找一个物体的轮廓,它不仅能找到明显的边缘,还能够较好地忽略噪声影响。Canny边缘检测是一种常见且有效的边缘检测方法,能够通过多个步骤精确地检测图像中的边缘。原创 2025-02-05 08:35:07 · 892 阅读 · 0 评论 -
【python opencv】连通性
在图像处理中,连通性通常指的是图像中像素之间的相邻关系。通过识别图像中连通的区域,我们可以更好地分析图像中的形状、对象或区域。连通性分析的应用广泛,例如,识别物体、边缘检测、图像分割等。简单来说,连通性就是判断哪些像素属于同一个物体或区域。比如,在黑白图像中,如果一个区域的所有像素的值都是1(白色),并且这些像素之间互相连通,我们就可以把它们看作是一个连通区域。在计算机中,这些连通区域是通过像素的邻接关系来定义的。图像的连通性分析是图像处理中一个非常重要的任务,可以帮助我们识别和分析图像中的连通区域。原创 2025-02-04 08:16:19 · 973 阅读 · 0 评论 -
【python opencv】图像金字塔
图像金字塔是一种在多层次上处理图像的技术,常用于图像的多分辨率分析。简单来说,你可以把图像金字塔看作是一个“金字塔结构”,从最底层开始,逐渐向上,每一层的图像尺寸都比上一层小。每一层的图像都保留了原图的不同分辨率信息。通常使用金字塔来实现图像的平滑、压缩、特征提取等操作。图像金字塔是一种有效的多分辨率表示方法,可以用于图像的平滑、压缩、特征提取和图像融合等任务。通过构建高斯金字塔和拉普拉斯金字塔,图像中的不同层次的细节得到了保留,使得图像在多尺度上进行处理成为可能。原创 2025-02-04 08:16:13 · 636 阅读 · 0 评论 -
【python opencv】数组的拆分
数组的拆分是指将一个大数组分割成多个小数组。拆分操作对于数据处理非常重要,特别是在图像处理和机器学习中,常常需要对数据进行拆分。通过拆分,我们可以根据需求将一个大型数组分解成多个小块进行处理或分析。数组的拆分是Numpy提供的一项基础操作,常用于数据预处理、特征提取等任务。通过np.split()等方法,我们可以根据需求将一个大数组拆解成多个子数组。拆分操作在实际应用中非常有用,尤其是在机器学习和图像处理中,数据的拆分和合并往往是常见的预处理步骤。原创 2025-02-06 09:07:38 · 630 阅读 · 0 评论 -
【python opencv】霍夫圆检测
霍夫圆检测是一种用于检测图像中圆形物体的算法。与霍夫线检测类似,霍夫圆检测通过将图像空间中的每个点映射到一个新的空间,在该空间中寻找模式,从而发现圆形。霍夫圆检测不仅能够检测图像中的圆形,还能够在复杂背景或存在噪声的情况下识别圆形物体。因此,霍夫圆检测在医学影像、自动驾驶、图像分析等领域有广泛应用。霍夫圆检测是通过霍夫变换检测图像中的圆形物体的算法。它通过将图像中的每个边缘点映射到参数空间(圆心坐标和半径的空间)来检测圆形。通过调整霍夫圆检测的参数,可以优化检测精度,尤其是在多圆和噪声较多的情况下。原创 2025-02-05 08:35:33 · 727 阅读 · 0 评论 -
【python opencv】图像噪声
在图像处理中,噪声是指那些不属于图像本身内容的随机干扰。噪声通常是由图像采集设备、传输过程或其他环境因素引起的。在实际应用中,图像中的噪声会影响图像的质量,使得图像看起来模糊或不清晰。为了提高图像的质量,通常需要进行噪声去除处理。椒盐噪声:图像中像素值出现极大(白点)或极小(黑点)的噪声。高斯噪声:噪声呈现为图像中的随机像素值波动,且通常符合高斯分布。泊松噪声:通常与图像采集过程中的光量变化相关,噪声呈现随机分布。图像噪声是图像处理中常见的挑战,它影响图像的质量和后续的处理结果。原创 2025-02-04 08:17:32 · 794 阅读 · 0 评论 -
【python opencv】sobel算子
Sobel算子是一种常用的边缘检测算法,它通过计算图像中每个像素点的梯度来寻找边缘。图像的边缘通常出现在灰度值发生急剧变化的地方,而梯度正是反映灰度变化的量度。Sobel算子利用图像局部区域的灰度变化情况,通过卷积操作来计算每个像素点在水平方向和垂直方向的梯度,从而提取出图像的边缘。简单来说,Sobel算子能够帮助我们找出图像中哪些地方的灰度变化最剧烈,这些地方通常对应着图像中的物体边缘。水平方向的Sobel算子(GxG_xGx):Gx−101−202−101。原创 2025-02-04 08:18:02 · 714 阅读 · 0 评论 -
【python opencv】SIFT算法 关键点方向及描述符
在SIFT算法中,关键点不仅仅是图像中的某些兴趣点,它们还包含了方向信息。这个方向是通过计算图像区域的梯度方向来确定的,这使得关键点对旋转具有不变性。进一步地,SIFT算法还为每个关键点计算一个描述符,用于描述该点周围的图像区域。这个描述符能够帮助我们在不同的图像中识别相同的关键点,即使这些图像存在旋转、缩放或光照变化。SIFT算法中的关键点方向计算和描述符生成是使得算法具备旋转不变性和强大特征匹配能力的关键步骤。原创 2025-02-05 08:36:21 · 650 阅读 · 0 评论 -
【python opencv】直方图均衡化
直方图均衡化(Histogram Equalization)是一种图像处理技术,旨在改善图像的对比度,使得图像的亮度分布更加均匀。在许多情况下,图像的亮度(或灰度值)可能集中在某个区域,导致图像显示效果较差。通过直方图均衡化,可以将图像的像素值分布调整到整个灰度范围,从而增强图像的对比度,使得图像细节更加清晰。举个例子:当我们拍摄照片时,如果光线过暗或过亮,图像的细节可能无法清晰显示,尤其是在明暗对比强烈的场景中。通过直方图均衡化,暗部和亮部的细节都能得到更好的呈现。原创 2025-02-04 08:16:56 · 775 阅读 · 0 评论 -
【Python opencv】图像的混合
图像混合就是将两张图像进行融合,使得它们看起来像是合成在一起的。这个过程通常通过在不同的像素位置进行加权平均来实现。比如,你可以将一张图像的透明度调低,并将另一张图像叠加在其上,这样你就可以看到两张图像的部分内容。图像混合在许多领域中有广泛应用,如图像编辑、视频处理、特效制作等。原创 2025-02-03 08:57:07 · 1041 阅读 · 0 评论 -
【python opencv】黑帽和礼帽
在形态学图像处理中,黑帽(Black Hat)和礼帽(Top Hat)是两种常用的运算。它们常用于图像的特征提取,尤其是在检测图像的细节、噪声、和边缘等方面。虽然它们看起来与开运算和闭运算相似,但它们的作用是不同的。黑帽:黑帽运算主要用于检测图像中的暗区域,特别是图像中的小的亮区域或者光滑的物体边缘。它通过从原始图像中减去闭运算的结果,来提取图像中较为“平坦”的部分。礼帽:礼帽运算主要用于检测图像中的亮区域,特别是图像中的小的暗区域或者光滑的背景边缘。原创 2025-02-04 08:16:40 · 709 阅读 · 0 评论 -
【python opencv】Harris检测原理
Harris角点检测是一种用于图像处理中寻找角点(关键点)的算法。角点是图像中具有显著变化的区域,通常出现在物体的边缘、交界处或曲率较大的地方。Harris角点检测的主要目的是在图像中找到这些显著的点,以便用于后续的图像处理任务,如物体识别、图像拼接等。Harris角点检测算法通过计算图像的局部梯度信息,构造结构张量矩阵,进而计算响应函数来检测图像中的角点。它是一种经典的角点检测方法,在许多计算机视觉任务中都有广泛应用,如图像拼接、物体识别、三维重建等。原创 2025-02-05 08:35:55 · 782 阅读 · 0 评论 -
【python opencv】SIFT算法-尺度空间极值点搜系和极值点定位
SIFT算法(尺度不变特征变换,Scale-Invariant Feature Transform)通过多尺度的方式来寻找图像中的稳定特征点,这些特征点对旋转、缩放甚至一定程度的光照变化都具有不变性。尺度空间的构建和极值点的检测是SIFT算法的核心步骤之一。在尺度空间中,SIFT算法通过寻找每个尺度下图像的极值点(局部最大值或最小值)来确定潜在的特征点,并通过精确定位来确保这些特征点在多个尺度下的稳定性。SIFT算法中的尺度空间极值点搜寻和极值点定位是图像特征检测的核心部分。原创 2025-02-05 08:36:15 · 876 阅读 · 0 评论 -
【python opencv】图像的仿射变换
图像的仿射变换是一种通过矩阵变换来对图像进行操作的方法。通过仿射变换,我们可以对图像进行平移、旋转、缩放、倾斜等操作,而这些变换后的图像仍然保持了原图的直线性和平行性。仿射变换不仅能改变图像的形状和位置,还能进行一些复杂的几何操作。你可以把图像想象成一个平面,仿射变换就像是对这个平面上的图像进行拉伸、压缩或旋转等。有时,我们需要通过指定图像中的三个点来定义一个仿射变换。通过三个点的映射关系,我们可以计算出仿射变换矩阵。import cv2# 读取图像# 定义原图像中的三个点(源点)原创 2025-02-03 08:57:41 · 664 阅读 · 0 评论 -
【python opencv】掩膜(mask)的应用
在图像处理中,掩膜(Mask)是一种用于局部操作的工具,它允许我们对图像的特定区域进行处理,而忽略其他区域。掩膜通常是一个二值图像,其中白色部分代表要处理的区域,而黑色部分则代表不需要处理的区域。通过这种方式,我们可以对图像的特定部分进行滤波、变换、增强等操作。掩膜的应用非常广泛,常见的应用场景包括区域选择、图像的局部增强、边缘检测以及目标跟踪等。在实际操作中,掩膜通常与其他图像处理方法(如卷积、模糊、锐化等)结合使用,来实现更精确的图像处理。原创 2025-02-04 08:17:02 · 1026 阅读 · 0 评论 -
【Python opencv】图像的加法
图像加法就是将两张图像按像素位置逐一相加,得到一张新的图像。简单来说,它就像你在两张照片上每个点都进行叠加,结果是一张新图像,其中每个像素的值是两张原图像对应位置像素的和。图像加法常常用于图像增强、图像融合等领域。原创 2025-02-03 08:57:01 · 496 阅读 · 0 评论 -
【Python opencv】图像的缩放
图像缩放是指改变图像的大小,使其变得更大或更小。你可以想象,将一张图片放大或缩小时,就像在电脑屏幕上拉伸或压缩图片一样。图像缩放通常用于图像处理、计算机视觉等领域,例如调整图像尺寸以适应不同的屏幕或存储设备,或者在图像识别中对不同尺寸的图像进行统一处理。原创 2025-02-03 08:57:14 · 675 阅读 · 0 评论 -
【python opencv】FAST算法原理及实现
FAST(Features from Accelerated Segment Test)是一种快速的角点检测算法,主要用于计算机视觉中的特征点检测。它的主要优点是速度非常快,能够实时地检测图像中的角点。FAST算法的核心思想是通过判断一个像素点是否为角点,具体来说,角点是指图像中灰度变化非常大的区域,通常出现在物体的边缘或者物体的交界处。FAST算法是一种非常高效的角点检测算法,适用于实时计算机视觉任务。其原理基于局部像素灰度比较,通过简单的阈值判断来检测图像中的角点。原创 2025-02-05 08:36:49 · 591 阅读 · 0 评论 -
【python opencv】图像的投射变换
图像的投射变换(也称为透视变换)是一种较为复杂的图像几何变换,它能够模拟从不同视角看待图像的效果。你可以想象通过摄像机拍摄一个平面对象,随着摄像机视角的变化,图像的透视效果也会发生变化。投射变换能够将一个矩形图像变形为任意四边形,通常用于图像的校正、视角变换、拼接等应用场景。图像的投射变换(透视变换)是一种强大的工具,能够通过变换矩阵将图像从一个平面映射到另一个平面,常用于图像的校正、拼接以及多视角图像处理等领域。通过给定图像中的四个点和目标位置,可以计算出投射变换矩阵并应用到图像上。原创 2025-02-03 08:57:48 · 1142 阅读 · 0 评论 -
【python opencv】图像旋转
图像旋转是指围绕图像中心点或者指定点,将图像按一定角度进行旋转。你可以想象在电脑屏幕上旋转一张图片,图片中的每个像素都会随着旋转角度一起转动。图像旋转通常用于图像校正、图像增强、特效制作等领域。原创 2025-02-03 08:57:36 · 660 阅读 · 0 评论 -
【python opencv】人脸检测基础及其实现
人类检测是计算机视觉中的一项重要任务,旨在自动识别图像或视频中的人类目标。它是许多应用的核心,如安全监控、自动驾驶、智能家居等。人类检测的基础是识别人的特征,如人体的形状、颜色、大小以及动态特征等。随着深度学习的进展,基于卷积神经网络(CNN)的方法已经成为主流技术,能够在复杂的环境中高效地检测和定位人类。原创 2025-02-06 09:07:26 · 488 阅读 · 0 评论 -
【python opencv】ORB算法原理及其实现
ORB(Oriented FAST and Rotated BRIEF)是一个高效的特征点检测与描述算法,常用于图像匹配、物体识别、图像拼接等任务。ORB结合了FAST角点检测器和BRIEF描述符,但相比SIFT和SURF,它不仅计算速度更快,而且能免费使用,这使得它成为许多实际应用中的首选。ORB算法是一种高效的特征点检测与描述算法,结合了FAST角点检测器和BRIEF描述符,并通过优化使得算法不仅计算速度快,而且具有旋转不变性。ORB广泛应用于图像匹配、物体识别、视频跟踪等任务。原创 2025-02-05 08:36:55 · 543 阅读 · 0 评论 -
【python opencv】laplacian算子
Laplacian算子是一种常用的边缘检测算法,用于找出图像中的边缘。与Sobel算子不同,Laplacian算子通过计算图像的二阶导数来检测边缘。图像的边缘通常表示灰度值发生急剧变化的地方,而Laplacian算子通过检测灰度值的变化速率来找到这些地方。具体来说,Laplacian算子通过计算每个像素点的邻域内的灰度值变化情况,来揭示图像中的边缘。简单来说,Laplacian算子能帮助我们识别出图像中灰度变化非常大的区域,这些区域通常对应着图像中的物体边缘。原创 2025-02-05 08:35:00 · 917 阅读 · 0 评论 -
【python opencv】SIFT算法简介
SIFT(尺度不变特征变换,Scale-Invariant Feature Transform)算法是一种在计算机视觉中常用的特征提取方法。它可以在不同的尺度、旋转、光照和视角变化下找到图像的“关键点”,并提取出这些关键点的独特描述子(特征)。这些描述子能够帮助我们在不同的图像中找到相似的区域,因此SIFT算法广泛应用于图像匹配、物体识别、图像拼接、三维重建等任务。SIFT算法是图像处理和计算机视觉中的重要工具,通过提取图像中的稳定特征点并生成描述符,SIFT能够在不同尺度、旋转和视角变化下进行图像匹配。原创 2025-02-05 08:36:08 · 727 阅读 · 0 评论 -
【python opencv】霍夫线检测
霍夫线检测是图像处理中的一种重要技术,用来检测图像中的直线。它的核心思想是将图像中的点映射到一个新的空间中,并在这个空间中寻找特定的模式。在实际应用中,霍夫线检测可以帮助我们从复杂的图像中提取出线条信息,无论是检测建筑物的轮廓、道路的边缘,还是车道线的检测等,霍夫线检测都有着广泛的应用。简单来说,霍夫线检测就是通过数学转换,将图像中的每个点映射到一个特定的“位置”,然后通过在这些位置上的累积来识别图像中的直线。霍夫线检测是基于霍夫变换的一个强大工具,广泛应用于计算机视觉中的直线检测任务。原创 2025-02-05 08:35:27 · 753 阅读 · 0 评论 -
【python opencv】边缘检测原理
边缘检测是一种图像处理技术,用于识别和定位图像中的显著变化区域,通常这些区域对应着物体的边界。边缘是图像中像素值发生急剧变化的地方,通常表示物体的轮廓。通过边缘检测,我们能够从图像中提取出关键的几何信息,从而对图像进行分析、理解和后续处理。比如说,在拍摄一张风景照片时,天空、山脉、树木等物体的轮廓就是边缘。边缘检测的目的是找到这些轮廓,帮助识别物体并进行更深层次的分析。边缘检测在许多计算机视觉任务中都有广泛应用,如目标检测、图像分割、图像匹配和物体识别等。原创 2025-02-04 08:17:55 · 626 阅读 · 0 评论 -
【python opencv】中值滤波
中值滤波(Median Filtering)是一种常用于图像去噪的技术。它的核心思想是在图像的每个像素周围选择一个窗口,然后用这个窗口内所有像素的中值替换当前像素的值。中值滤波特别有效于去除“椒盐噪声”,即图像中随机分布的黑白点噪声。与高斯滤波等方法不同,中值滤波不依赖于权重或者邻域的平均值,而是根据图像的像素值排序后选择中间的值。这使得中值滤波在保留图像边缘和细节方面表现良好,并且能够有效去除极端值所造成的噪声。中值滤波是一种常用的图像去噪方法,特别适用于去除椒盐噪声。原创 2025-02-04 08:17:14 · 1021 阅读 · 0 评论 -
【python opencv】开闭运算
在图像处理中,开运算(Opening)和闭运算(Closing)是常见的形态学运算。这两种操作是膨胀和腐蚀的组合运算,通常用于二值图像中,以实现去噪、连接断裂的物体、填补空洞等效果。开运算:开运算首先进行腐蚀操作,然后进行膨胀操作。它通常用于去除小的噪声点(特别是白色噪点),同时保持较大的结构不变。闭运算:闭运算则是先进行膨胀操作,再进行腐蚀操作。它常用于填补小的黑色空洞,连接图像中的物体,避免图像的分离。开运算“去除”噪声或小物体。闭运算“填补”空洞或连接物体。原创 2025-02-04 08:16:32 · 709 阅读 · 0 评论 -
【python Numpy】数组的级联合并
数组的级联合并(stacking)是指将多个数组沿着某个特定轴进行合并,生成一个新的数组。通过级联合并,可以将多个数组连接在一起,形成一个更大的数组。Numpy提供了几种级联合并的方法,其中常见的包括按行合并(vstack),按列合并(hstack),按深度合并(dstack)等。Numpy的级联合并功能使得我们可以轻松地将多个数组组合成一个新的数组。这些方法可以帮助我们在数据处理和特征提取时进行数据整合。通过选择不同的合并方式(按行、按列、按深度),可以方便地构建所需的数据结构。原创 2025-02-06 09:07:32 · 779 阅读 · 0 评论 -
【python opencv】模板检测
模板匹配是一种在图像中寻找与给定模板(小图像)相似部分的方法。它通过滑动模板图像,逐像素地计算模板和目标图像每个区域之间的相似度,从而找到目标图像中最匹配模板的位置。模板匹配被广泛应用于对象检测、图像识别等领域。简单来说,模板匹配就像是在大图中寻找一个小图,只要两者相似,就可以找到匹配的位置。它主要用于图像中的某个特定区域或特征的检测。模板匹配是图像处理中非常基础且重要的一种方法,通过计算目标图像和模板图像之间的相似度,能够有效地检测到图像中的特定区域。原创 2025-02-05 08:35:13 · 944 阅读 · 0 评论 -
【python opencv】meanshift的原理及其实现
MeanShift算法是一种基于迭代的无监督学习算法,常用于图像处理中的目标跟踪、聚类分析、密度估计等任务。它的主要思想是通过逐步移动一个窗口,寻找数据集中密度最大的区域。在图像处理中,MeanShift常被用于目标跟踪,它通过在每一帧图像中根据颜色分布和位置更新目标的位置。MeanShift算法是一种非常强大的非参数估计方法,广泛应用于图像目标跟踪、聚类分析、密度估计等领域。它通过逐步更新窗口位置来寻找数据中的高密度区域,具有较强的稳定性和适应性。原创 2025-02-06 09:06:47 · 432 阅读 · 0 评论 -
【python opencv】直方图的原理与显示
直方图(Histogram)是图像处理中常用的工具,用来表示图像中各个灰度级别像素出现的频率。通俗来说,直方图是一个柱状图,每一个柱子代表图像中某个灰度级别的像素数。通过直方图,我们可以直观地了解图像的亮度分布以及图像的对比度、亮度等信息。在图像处理中,直方图有很多应用,比如对比度增强、图像均衡化、阈值处理等操作。直方图能够帮助我们分析图像的特征,从而对图像进行有效的处理。直方图是图像处理中非常重要的工具,它帮助我们理解图像的灰度分布情况。通过直方图,我们可以进行图像的对比度调整、均衡化、增强等操作。原创 2025-02-04 08:17:07 · 538 阅读 · 0 评论 -
【python opencv】均值滤波
均值滤波(Mean Filtering)是一种常见的图像处理技术,用于去除图像中的噪声,尤其是椒盐噪声。均值滤波通过将每个像素值替换为该像素周围邻域的平均值,从而达到平滑图像的效果。这个方法非常简单且有效,尤其在噪声较为均匀的情况下。简单来说,均值滤波就是用一个滤波器(通常是一个小的矩形或正方形窗口)覆盖图像的每个像素,计算这个窗口内所有像素的平均值,并用这个平均值替代该像素的原始值。这个过程帮助消除突如其来的像素值波动(即噪声),从而使得图像更加平滑。原创 2025-02-04 08:17:26 · 629 阅读 · 0 评论 -
【python opencv】图像的平移
图像平移是指将图像中的所有像素按照一定的偏移量(水平和/或垂直方向)进行平移。这就好比你把一张纸从桌子上的一个位置移动到另一个位置,图像中每个点都跟着一起移动。图像平移常用于图像对齐、图像拼接等任务。原创 2025-02-03 08:57:30 · 586 阅读 · 0 评论 -
【python opencv】SIFT算法实现
SIFT(尺度不变特征变换,Scale-Invariant Feature Transform)是一种强大的图像特征提取算法,广泛应用于计算机视觉领域,特别是在物体识别、图像匹配、图像拼接等任务中。SIFT算法的核心思想是通过寻找图像中的特征点(关键点),并提取描述这些关键点的特征描述符,使得在不同尺度、不同视角、甚至光照变化的情况下能够稳定地匹配这些特征点。SIFT算法的实现过程包括多个重要步骤:尺度空间构建、极值点检测、关键点方向分配、描述符计算和特征匹配。原创 2025-02-05 08:36:26 · 805 阅读 · 0 评论 -
【python opencv】霍夫线变换原理
霍夫线变换是一种用来在图像中检测直线的方法。它的基本思想是,通过将直线从笛卡尔坐标系转换到极坐标系,然后寻找图像中所有可能的直线的参数(角度和距离),从而找到图像中的直线。这个方法可以有效地识别出图像中的直线结构,特别适用于图像中包含噪声和模糊时的直线检测。简单来说,霍夫线变换就像是给图像中的直线标注一个“身份证号”,然后通过不断扫描图像,找到这些“身份证号”相同的地方,最终就能检测到直线。霍夫线变换是一种非常强大的方法,适用于在图像中检测直线。原创 2025-02-05 08:35:22 · 654 阅读 · 0 评论 -
【python opencv】shi-tomas检点检测
Shi-Tomasi角点检测是一种用于图像处理中寻找角点的算法。角点是图像中局部结构变化显著的点,通常出现在物体的边缘交汇处或曲率变化较大的地方。Shi-Tomasi算法是对经典Harris角点检测的改进,它通过计算图像的局部梯度信息,找出图像中的角点,并用于图像匹配、物体跟踪等应用。Shi-Tomasi角点检测算法是Harris角点检测的改进版本,采用了更为简洁和高效的计算方式。与Harris方法不同,Shi-Tomasi算法通过计算结构张量矩阵的最小特征值来评估角点强度,避免了复杂的响应函数计算。原创 2025-02-05 08:36:01 · 714 阅读 · 0 评论 -
【python opencv】自适应均衡化
自适应均衡化(Adaptive Histogram Equalization,简称AHE)是一种改进的图像增强技术,旨在通过调整图像中局部区域的灰度分布来改善图像的对比度。与标准的直方图均衡化不同,标准的均衡化是基于全图的灰度分布进行调整,这可能会导致一些细节的丢失,尤其是在图像有较大亮度差异的情况下。而自适应均衡化则通过将图像分割成多个小块,对每个小块单独进行直方图均衡化,从而保持图像的局部细节。自适应均衡化特别适用于处理低对比度图像,能够有效增强局部细节,尤其是在图像中有明显暗区或亮区时。原创 2025-02-04 08:17:50 · 877 阅读 · 0 评论 -
【python opencv】高斯滤波
高斯滤波(Gaussian Filtering)是一种通过高斯函数加权的图像平滑方法,广泛用于去噪、模糊、特征提取等任务。与均值滤波不同,高斯滤波采用高斯分布作为权重,中心区域的权重最大,越远离中心的区域权重越小,这样能在去噪的同时更好地保留图像的细节。简单来说,高斯滤波是通过给图像中的每个像素赋予一个由高斯分布决定的权重,计算每个像素及其周围像素的加权平均值,从而实现图像的平滑效果。由于高斯滤波的平滑作用不仅仅是模糊掉噪声,还能减少边缘信息的损失,因此它在图像处理中的应用十分广泛。原创 2025-02-04 08:17:21 · 658 阅读 · 0 评论