(回溯法)求无向图的所有哈密顿回路

给定一个无向图,由指定的起点前往指定的终点,用回溯法来进行解题时,最好的方法就是用递归算法,可以清晰明了的设置好每一步,由于哈密顿回路是所有顶点都需要经过且只能经过一次,所以需要设置一个解向量数组x[ ]来记录已经经过的顶点;那在判断每个边,经过每个点时,需要将可能从起点到达终点的路径都要记录下来,我们选择使用vector容器来记录每一个经过的路径。

vector<int> path

跟蛮力法有些相似,核心思想就是把当前访问的顶点所连接的所有顶点都用递归法访问一边,直到找到的最后一个顶点恰好为终点时,将路径进行输出。

void Ham(int i,int num,int x[],vector<int> path){
	if(num==1&&s[i][End])		//只剩最后一个点且刚好为终点 
	{path.push_back(End);
	 display(path);
	 return;}
	 else if(num==1)	return;		//减枝 
	 else if(num>1){
	 	for(int j=1;j<MAX;j++)
	 	 if(j!=End&&s[i][j]&&!x[j])		//满足下一落脚点 
	 	  {
		   	x[j]=1;
		   	num--;
		   	path.push_back(j);
		   	Ham(j,num,x,path);
		   	num++;				//回溯	
		   	x[j]=0;				//回溯 
		   	path.pop_back();	//回溯 
		   }
	 }
}

对应数组为s[MAX][MAX] ,为了方便,我将第一行与第一列置为0不使用.

int s[MAX][MAX]={{0,0,0,0,0,0},
				 {0,0,1,1,0,1},
				 {0,1,0,0,1,1},
				 {0,1,0,0,1,0},
				 {0,0,1,1,0,1},
				 {0,1,1,0,1,0}};

完整代码:

#include<iostream>
#define MAX 6
#include<vector>
using namespace std;
int s[MAX][MAX]={{0,0,0,0,0,0},
				 {0,0,1,1,0,1},
				 {0,1,0,0,1,1},
				 {0,1,0,0,1,0},
				 {0,0,1,1,0,1},
				 {0,1,1,0,1,0}};
int First;
int End;
void display(vector<int> path)
{
	for(auto p=path.begin();p!=path.end();p++)
	 {	if(p!=path.begin())
	 		cout <<"--->";
	 	cout<<*p;}
	cout<<endl;
}

void Ham(int i,int num,int x[],vector<int> path){
	if(num==1&&s[i][End])		//只剩最后一个点且刚好为终点 
	{path.push_back(End);
	 display(path);
	 return;}
	 else if(num==1)	return;		//减枝 
	 else if(num>1){
	 	for(int j=1;j<MAX;j++)
	 	 if(j!=End&&s[i][j]&&!x[j])		//满足下一落脚点 
	 	  {
		   	x[j]=1;
		   	num--;
		   	path.push_back(j);
		   	Ham(j,num,x,path);
		   	num++;				//回溯	
		   	x[j]=0;				//回溯 
		   	path.pop_back();	//回溯 
		   }
	 }
}

main()
{
int x[MAX]={0};
vector<int> path;
cout <<"输入起点和终点"<<endl;
 cin >>First;
 cin >>End;
 x[First]=1;
 path.push_back(First);
 Ham(First,MAX-2,x,path);
	return 0;
}

如有错误,欢迎指正

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 回溯算法无向图的所有哈密顿回路的步骤如下: 1. 选定一个起点,将其加入路径中。 2. 对于当前路径中的最后一个节点,枚举其所有未访问过的邻居节点。 3. 如果该邻居节点已经在路径中出现过,则跳过。 4. 如果该邻居节点是起点,且路径中的节点数等于图中节点数,则找到一条哈密顿回路,将其加入结果集中。 5. 如果该邻居节点不是起点,将其加入路径中,继续递归搜索。 6. 回溯,将该邻居节点从路径中移除,继续枚举其他邻居节点。 7. 如果所有邻居节点都已经被访问过,则回溯到上一个节点,将其从路径中移除。 8. 重复步骤2-7,直到所有可能的路径都被搜索完毕。 需要注意的是,在搜索过程中需要记录已经访问过的节点,以避免重复访问。同时,为了提高搜索效率,可以使用一些剪枝策略,如判断当前路径是否已经包含了所有节点,或者判断当前节点的邻居节点是否能够组成哈密顿回路。 ### 回答2: 哈密顿回路是指在无向图中经过每一个点且只经过一次的回路。要设计一个回溯算法求出无向图的所有哈密顿回路。 回溯算法是一种解问题的模板,其基本思想是递归地搜索所有可能的解,每次进入下一层递归时,都需要判断当前状态是否满足条件,如果不满足,则返回上一层递归,重新选择其他路径,继续搜索。这个算法被广泛应用于解组合优化问题。 具体实现哈密顿回路问题的回溯算法,我们可以定义一个递归函数,用来搜索当前节点是否可以连接到下一个未访问的节点,如果可以连接,则继续递归搜索剩余的节点;如果不能连接,则返回上一层递归,重新选择路径。具体步骤如下: 1. 初始化已访问数组visit[],将所有节点标记为未访问。 2. 从任意节点开始递归搜索,将该节点标记为已访问。 3. 对于当前节点,枚举所有与之相连且未访问的节点,选择一条路径,连接到下一个节点。 4. 如果下一个节点是起始节点且所有节点都已被访问,则找到了一条哈密顿回路,将其输出,并返回上一层递归。 5. 如果下一个节点不是起始节点且当前状态满足条件,则继续递归搜索下一个节点。 6. 如果所有路径都被尝试过,或当前状态不满足条件,则返回上一层递归。 需要注意的是,在实现过程中,我们需要判断当前状态是否满足哈密顿回路的要。具体来说,如果当前已选择的节点数少于图中所有节点数,或当前节点已被访问过,则状态不满足条件,返回上一层递归。另外,为了减少搜索时间,我们可以预处理出每个节点与之相连的所有节点,以便在搜索时快速寻找可用路径。 总而言之,哈密顿回路问题是一个典型的组合优化问题,在实现过程中需要考虑多方面的因素。回溯算法是一种常用的解组合问题的方法,其核心思想是递归地搜索所有可能的解。在具体实现中,我们需要处理好状态转移和剪枝等问题,以得最优解。 ### 回答3: 哈密顿回路是指一条回路,通过每个点恰好一次。回溯算法用于解决搜索树中的问题。为了找到无向图哈密顿回路,我们需要使用回溯方法,将一条路径从一个点走到另一个点,并继续遍历图形的其余部分。如果路径经过所有的节点并且最后回到了起始节点,则找到了哈密顿回路。如果没有找到哈密顿回路,则可以反悔并探索其他路径,直到找到解决方案。 算法实现的基本步骤如下: 1.从一个节点开始,用深度优先搜索遍历所有相邻的节点,直到找到一条包含所有节点的路径。 2.如果在此过程中找到了一条哈密顿回路,则返回找到的路径。如果没有找到哈密顿回路,则返回上一个节点并继续搜索。 3.回溯继续在其他未访问的节点中进行相同的操作,直到找到哈密顿回路或搜索结束。 4.最终算法将返回所有的哈密顿回路。 该算法的时间复杂度为O(n!),因此对于大型图形,回溯算法的计算成本可能很高,需要进行优化。优化方法包括使用随机启发式搜索和剪枝技术。 总之,设计一个回溯算法来解决无向图哈密顿回路问题是一个难题,需要耐心和技巧。通过深入理解问题并运用适当的技术,可以找到一个可行的解决方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值