自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 基于深度残差网络(ResNet)的水果分类识别系统

本文主要介绍如何使用python搭建:一个基于深度残差网络(ResNet)的水果图像分类识别系统。提示:以下是本篇文章正文内容,下面案例可供参考如下图所示,使用Resnet18网络在81类水果数据集的测试集上的精度在71%左右。

2023-10-14 12:29:42 1358 5

原创 水果识别系统Python,基于TensorFlow卷积神经网络算法

提示 面对水果识别系统Python,基于TensorFlow卷积神经网络算---深度学习算法:提示:以下是本篇文章正文内容,下面案例可供参考。

2023-10-10 19:42:50 1778 2

原创 python数据分析0基础--学习掌握---附链接

机器学习 ( ML )是人工智能的应用程序,计算机程序使用算法来查找数据中的模式。他们可以在没有专门编程的情况下做到这一点,而不需要依赖人类。在当今世界,机器学习算法几乎落后于市场上的所有人工智能 (AI) 技术进步和应用程序。人工智能系统通常具有计划、学习、推理、解决问题、感知、移动甚至操纵的能力。机器学习是人工智能系统中使用的众多方法之一。其他包括进化计算和专家系统。这只是部分机器学习的一下方法和理解,要多次手动尝试去学习才能够进阶的了解机器学习内容。

2023-06-05 19:52:44 158 1

原创 机器学习-0基础

机器学习 ( ML )是人工智能的应用程序,计算机程序使用算法来查找数据中的模式。他们可以在没有专门编程的情况下做到这一点,而不需要依赖人类。在当今世界,机器学习算法几乎落后于市场上的所有人工智能 (AI) 技术进步和应用程序。人工智能系统通常具有计划、学习、推理、解决问题、感知、移动甚至操纵的能力。机器学习是人工智能系统中使用的众多方法之一。其他包括进化计算和专家系统。这只是部分机器学习的一下方法和理解,要多次手动尝试去学习才能够进阶的了解机器学习内容。

2023-05-15 15:05:47 293

原创 Spring初始创建--简易

我们将对我们的配置文件进行配置。将对应的实体类和接口进行连通。以防万一与其他实体类和接口连接的相关.4:配置好自己安装的maven,以及对应的仓库。否则被系统默认为c盘本地。2.TeStDog类:用于测试---->Dog实体类的实现效果。3.创建配置文件:Spring.xml文件。1.创建实体类:Dog.java。

2023-03-30 12:14:26 61

原创 载入数据和理解数据

载入数据和理解数据提示:以下是本篇文章正文内容,下面案例可供参考。

2023-03-29 22:23:30 98

原创 SSM框架--Mavens‘与IDE的配置以及创建Mavens项目

IDE与Mavens框架的项目的创建和配置

2023-03-03 11:48:12 213

原创 Linux中安装Pycham步骤

第三 打开终端命令框 输入以下代码。打开下载的安装包 右键打开选择 compress解压文件。3.cd pycharm安装包名字。2.cd 自己刚刚建的文建夹。第一 在虚拟机上浏览器打开。1.切换管理员模式:su。5.等待加载文件安装。解压到自己建的文建夹。

2022-11-21 11:03:55 557 1

python数据分析0基础-学习掌握-附链接

python数据分析基础一

2023-06-09

学生信息管理系统v2.1

加深对语法和判断以及等各类的学习, 项目内容:1菜单 2添加信息的讲解,3遍历信息,4删除信息,5查找信息,6修改信息,7整个项目的整合。 学生信息管理程序 基本要求: 1.要求实现学生信息的 使用帮助、添加、查找、删除、修改、保存,等9个功能,每个功能模块均能实现从模块中退出,从而完成一个学生管理系统所需功能。 2.要使用结构体来实现对学生信息的存储。

2023-03-29

项目二(1) 电影数据分析(线性回归)实验报告

该资源内含ipynb文件 主要用于机器学习进行深度学习,能帮助大家加深学习影响。 通过本次实训,要求初步掌握数据分析过程和Python数据分析常用包:Pandas、matplotlib、sklearn的基本使用。 一个完整、充分的数据统计过程主要包括以下步骤:电影数据读取,数据清洗,模型建立,模型训练,数据预测与模型的可视化 实训环境: PyCharm或Anacorda环境、Pandas、NumPy、matplotlib、sklearn 在电影数据中,统计量日均票房=累计票房/放映天数。当日均票房不足百万元时一般将会在接下来的一周左右下档。我们可能会联想推测,日均票房与放映天数是否存在一定的相关性?在本节中,我们将通过一元线性回归对两项数据进行简要的相关性分析,探讨是否可以通过计划放映天数预测电影的票房。

2023-03-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除