基于深度残差网络(ResNet)的水果分类识别系统

本文介绍了如何使用Python搭建基于深度残差网络(ResNet)的水果图像分类系统,包括数据预处理、网络结构、损失函数选择、超参数调整以及模型在测试集上的性能评估。文中还讨论了经典算法如AlexNet、VGG网络的优缺点。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

本文主要介绍如何使用python搭建:一个基于深度残差网络(ResNet)的水果图像分类识别系统。


提示:以下是本篇文章正文内容,下面案例可供参考

一.背景含义项目说明

1.本文主要介绍如何使用python搭建:一个基于深度残差网络(ResNet)的水果图像分类识别系统。

项目只是用水果分类作为抛砖引玉,其中包含了使用ResNet进行图像分类的相关代码。(主要功能 如下):

  • 数据预处理,生成用于输入TensorFlow模型的TFRecord的数据。
  • 模型构建及训练,使用tensorflow.keras构建深度残差网络。
  • 预测水果分类并进行模型评估。

二、数据预处理

1.数据介绍:

数据大小 81类水果数据集共计14124张图片
数据条目 训练集11331张图片–测试集2793张图片
数据格式 jpg格式,ImageNet数据集格式

数据集格式为ImageNet数据集格式。该数据集包含81个种类的水果,数据集共81个类别:人参果、佛手瓜、哈密瓜、圣女果、山楂、山竹、无花果、木瓜、李子、杏、杨桃、杨梅、枇、枣、柚子、柠檬、柿子、树莓、桂圆、桑葚、梨、椰子、榴莲等
在这里插入图片描述
2.读取/获取数据
使用pytorch工具类DataLoader读取该数据集,其中对数据按照224*224进行了随机裁剪、随机水平翻转、转化为张量、并按照均值mean=[0.485, 0.456, 0.406]标准差std=[0.229, 0.224, 0.225]进行了归一化处理。训练集与测试集按照8:2的比例进行划分。

3.部分代码展示

  • 导入包
import streamlit as st
import cv2
from PIL import Image,ImageDraw,ImageFont
import tempfile
import torch
from torchvision import transforms
import torch.nn.functional as F
import numpy as np
import config
  • 采用PTL读取数据集
nput:PIL读取的image
    return:经过模型预测的带有类别标签、置信度的PIL格式的图片
    '''
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    #图片前处理
    val_transforms = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225])
    ])
    uploaded_image=uploaded_image.convert('RGB')
    transform_image = val_transforms(uploaded_image)
    predict_image = transform_image.unsqueeze(0).to(device)
    pred_logits = 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值