关于加减运算时能否使用等价无穷小的问题

本文讨论了无穷小在数学运算中的性质,指出非无穷小数加减无穷小数的结果保持不变。同时阐述了高阶无穷小与低阶无穷小的关系,并举例说明等价无穷小在特定情况下的运用限制。通过这些理论,我们可以更好地理解并判断何时能使用等价无穷小进行简化计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

众所周知,任意一个非无穷小,也非无穷大的数,加减一个无穷小的数,结果都为自身:
在这里插入图片描述
又众所周知,高阶无穷小与低阶无穷小的比值为0,0也为特殊的无穷小:
在这里插入图片描述由此我们可得知如下公式:
在这里插入图片描述
由此我们就可以粗略判断出在加减运算时是否可以直接利用等价无穷小了。
事实上,同理同阶无穷小也是可以用这个方法提出来的。
比如说举个例子:
在这里插入图片描述
这也能解释我们最初遇到的典型反例为什么不能用等价无穷小运算了,因为tanx或者sinx都不是x三次方的高价无穷小,都不能随意提出来:
在这里插入图片描述
以上均为个人猜想,所以如果有错误还请及时指出。
谢谢您的观看。

<think>好的,用户的问题是关于等价无穷小代换在极限中的应用以及相关的数学公式。首先需要明确等价无穷小的定义和适用条件。当x趋近于某个点,比如0,如果两个无穷小量α和β满足lim α/β=1,那么它们就是等价的,记作α~β。常见的等价无穷小有sinx~x,tanx~x,ln(1+x)~x,e^x-1~x等。 接下来要整理等价无穷小代换的使用规则。用户可能想知道在什么情况下可以进行代换,比如乘除运算中可以直接替换,但加减运算中通常不能直接使用,否则可能导致错误。例如,在极限lim(x→0) (sinx - x)/x^3中,若直接替换sinx为x,会得到0,但实际上正确答案是-1/6,这候就需要用泰勒展开而不是简单的代换。 然后需要收集一些典型例题,展示正确的应用方法。例如计算lim(x→0) (tanx - sinx)/x^3,可以先将tanx替换为x,sinx替换为x,但这样会导致错误,正确的做法是使用更精确的泰勒展开,或者将表达式变形为sinx(1 - cosx)/x^3cosx,再利用等价无穷小代换1 - cosx~x²/2。 还需要注意常见的误区,比如在加减法中使用代换可能导致错误结果,这候需要强调适用的条件。同,高阶无穷小的处理也是关键,比如在乘积中高阶无穷小可以忽略,但在和差中不能随意省略。 最后,要确保回答中正确使用数学公式的格式,行内公式用$包裹,独立公式用$$,并且代码块如果有的话要用三个反引号注明语言。检查是否符合用户的所有要求,包括分步骤、避免使用第一人称和步骤词汇,以及最后生成相关问题。相关问题需要基于用户的原问题,比如等价无穷小的条件、加减法中的错误例子,以及与泰勒展开的关系等。</think>当 $x \to 0$ 等价无穷小代换是求解极限的重要工具。以下是关键知识点和典型应用: **一、基本等价关系** $$sinx \sim x,\ \ tanx \sim x,\ \ e^x-1 \sim x,\ \ ln(1+x) \sim x$$ $$1-cosx \sim \frac{1}{2}x^2,\ \ (1+x)^a-1 \sim ax,\ \ a^x-1 \sim xlna$$ **二、应用准则** 1. 代换仅适用于乘除运算中的因子项 2. 加减运算中一般不能直接代换 3. 复合函数需保持无穷小量结构一致 4. 需保证代换后的精度满足计算需求 **三、典型例题解析** 计算 $\lim_{x \to 0} \frac{tan2x - sin3x}{x^3}$: ```python # 错误示范:直接替换 tan2x~2x,sin3x~3x # 正确解法: 分子 = 2x - (3x - (3x)^3/6) + o(x^3) # 泰勒展开 = 2x - 3x + 4.5x^3 + o(x^3) = -x + 4.5x^3 + o(x^3) 结果 = (-x + 4.5x^3)/x^3 → 不存在 ``` **四、进阶技巧** 对于 $\lim_{x \to 0} \frac{sinx - x}{x^3}$ 这类问题: $$sinx = x - \frac{x^3}{6} + o(x^3)$$ 代入得: $$\frac{(x - \frac{x^3}{6}) - x}{x^3} = -\frac{1}{6}$$ **五、常见误区** - 在 $\lim_{x \to 0} \frac{tanx - sinx}{x^3}$ 中,错误代换会得到 0 - 正确解法应提取公因子: $$\frac{sinx(1 - cosx)}{x^3cosx} \sim \frac{x \cdot \frac{1}{2}x^2}{x^3} = \frac{1}{2}$$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值