关于加减运算时能否使用等价无穷小的问题

本文讨论了无穷小在数学运算中的性质,指出非无穷小数加减无穷小数的结果保持不变。同时阐述了高阶无穷小与低阶无穷小的关系,并举例说明等价无穷小在特定情况下的运用限制。通过这些理论,我们可以更好地理解并判断何时能使用等价无穷小进行简化计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

众所周知,任意一个非无穷小,也非无穷大的数,加减一个无穷小的数,结果都为自身:
在这里插入图片描述
又众所周知,高阶无穷小与低阶无穷小的比值为0,0也为特殊的无穷小:
在这里插入图片描述由此我们可得知如下公式:
在这里插入图片描述
由此我们就可以粗略判断出在加减运算时是否可以直接利用等价无穷小了。
事实上,同理同阶无穷小也是可以用这个方法提出来的。
比如说举个例子:
在这里插入图片描述
这也能解释我们最初遇到的典型反例为什么不能用等价无穷小运算了,因为tanx或者sinx都不是x三次方的高价无穷小,都不能随意提出来:
在这里插入图片描述
以上均为个人猜想,所以如果有错误还请及时指出。
谢谢您的观看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值