碾转相除法求最大公约数(gcd)证明

由于本人水平有限,此篇文章的证明范围只针对:已知任意两个正整数a,b,求a和b的最大公约数。

如有错误,烦请各位指正。

辗转相除法过程:取a和b两个正整数,然后取较大的数x=max(a,b)对较小的数y=min(a,b)取余得到x%y,如果余数为0,则y为所求最大公约数,如果余数不为0,则对x%y和y两个正整数继续重复以上过程。

举例:求12和27的最大公约数gcd(12,27).

第一步:27%12=3,不等于0,求gcd(3,12).

第二步:12%3=0,余数为0,可得3为最后所求值,即gcd(12,27)=3.

好了,下面开始证明碾转相除法的可行性。

第一点,易得,取任意正整数a和k,gcd(a,k*a)的值一定为a。这就是为什么最后余数为0的时候,除数是最大公约数。(这个应该不需要证明了吧,让我证我真写不来)

第二点,求证gcd(a,b)==gcd(x%y,y).

        为了方便证明,令a>=b,所以x%y=a%b,y=b,即证明gcd(a,b)==gcd(a%b,b)

        1.取任意a和b的公约数r,那么a=Ar,b=Br,(r,A,B均为正整数).

        所以a%b=Ar%Br,令a除以b的商为k,那么余数a%b=Ar-kBr=(A-kB)*r,易得r也为a%b的约数。另外r也是b的约数,所以左边(a和b)的任意一个公约数也是右边(a%b和b)的公约数。

        2.反过来,再取任意a%b和b的公约数R,那么a%b=TR,b=BR,(R,T,B均为正整数).

        所以令a除以b的商为k,那么a=kb+a%b=kBR+TR=(kB+T)R,易得R也为a的约数。另外R也是b的约数,所以右边(a%b和b)的任意一个公约数也是左边(a和b)的公约数。

        3.所以两边的最大公约数就相等,得证。PS:我最开始有认为万一两边的最大公约数不一样怎么办,比如左边最大为r,右边最大为R,且r>R。但是根据之前的结论可得,r和R都是两边各自的公约数之一,所以两者不等的话,小的那边(这里的例子是R)就不是“最大”公约数了,和假设违背。

        实际上,两边最大公约数相等的时候,两边的公约数组成的集合也一样了。(扯远了)

既然这两点的正确性被证明了,那么由这两个步骤组成的碾转相除法正确性也就得到了证明。

代码:

int gcb(int x,int y){
	int a=max(x,y);
	int b=min(x,y);
	if(a%b==0)return b;
	else return gcb(a%b,b);
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值