关于矩阵乘法的记忆方法

目录

前言

m*n的矩阵

矩阵乘法


前言

因为学的东西有点多又贪玩,所以关于矩阵的乘法容易忘掉,比如说m*n的矩阵是m行n列还是m列n行一直搞不明白,两个矩阵相乘的规则总会忘掉,什么样的两个矩阵可以相乘,什么不可以,这里就简单的写一个笔记作为总结。

总结就一句话,记住“行列式”这三个字就可以了。

当然,行列式和矩阵的定义有所区别,这里只是作为辅助记忆引入,具体定义这里就不细说,也不要轻易将两者混淆。

m*n的矩阵

指的是m行n列的矩阵,与“行列式”三个字前后相对应,即行在前,列在后,m*n中前面的就是行,后面的就是列。

矩阵乘法

两个矩阵相乘,举例:AB=C。

1.前者(A矩阵)a行与后者(B矩阵)b列逐项相乘的和,是最后得数C矩阵的第a行第b列的数据,也可以对比“行列式”三个字对应记忆,行在前,列在后。

下面是举例的图,图源来自矩阵乘法_百度百科 (baidu.com)

 

2.如果前者(A矩阵)a行与后者(B矩阵)b列上的数字个数不符合,那么矩阵乘法不成立,也就是两个矩阵不能相乘,也可以类比“行列式”三个字对应记忆,行在前,列在后。

PS:即前者(A矩阵)的列数与后者(B矩阵)的行数不同,乘法无法成立,为了不违背“行列式”的顺序,所以换的说法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值