头歌Tensorflow核心模块

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv1D, MaxPool1D, LSTM, BatchNormalization, Dropout, Flatten, Reshape
model = Sequential()
######### Begin########
# 1nd block 通道数 64
model.add(Conv1D(64, 3, activation="relu",
                 input_shape=(1, 1), padding="same"))
model.add(Conv1D(64, 3, activation="relu", padding="same"))
model.add(BatchNormalization(trainable=True))
model.add(MaxPool1D(pool_size=2, strides=1, padding='same'))
# 2nd block 通道数 128
model.add(Conv1D(128, 3, activation="relu", padding="same"))
model.add(Conv1D(128, 3, activation="relu", padding="same"))
model.add(BatchNormalization(trainable=True))
model.add(MaxPool1D(pool_size=2, strides=1, padding='same'))
# 3nd block 通道数 256
model.add(Conv1D(256, 3, activation="relu", padding="same"))
model.add(Conv1D(256, 3, activation="relu", padding="same"))
model.add(Conv1D(256, 3, activation="relu", padding="same"))
model.add(BatchNormalization(trainable=True))
model.add(MaxPool1D(pool_size=2, strides=1, padding='same'))
# 4nd block 通道数 512
model.add(Conv1D(512, 3, activation="relu", padding="same"))
model.add(Conv1D(512, 3, activation="relu", padding="same"))
model.add(Conv1D(512, 3, activation="relu", padding="same"))
model.add(BatchNormalization(trainable=True))
model.add(MaxPool1D(pool_size=2, strides=1, padding='same'))
# 5nd block 通道数 512
model.add(Conv1D(512, 3, activation="relu", padding="same"))
model.add(Conv1D(512, 3, activation="relu", padding="same"))
model.add(Conv1D(512, 3, activation="relu", padding="same"))
model.add(BatchNormalization(trainable=True))
model.add(MaxPool1D(pool_size=2, strides=1, padding='same'))
# 6nd block LSTM层
model.add(LSTM(512))
model.add(BatchNormalization(trainable=True))
# 7nd block 全连接层
model.add(Dense(512, activation='relu'))
model.add(Dense(128, activation='tanh'))
model.add(Dense(1, activation='linear'))  
########End########
model.summary()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值