一、导数概念

本文详细介绍了导数的概念,包括函数在某点的可导性、导数的几何意义以及切线和法线的求解。还讨论了单侧导数的重要性,指出函数在某点可导的充分必要条件。此外,提到了导数在经济学中的应用,如边际成本函数。最后,阐述了可导性与连续性的关系,强调连续是可导的必要条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.导数的定义

        导数是用来精确描述函数变化率的一个工具。

        函数在一点x0处可导(导数): 因变量增量Δy与自变量增量Δx的比值在Δx趋于0时,极限A如果存在,A即为在x0处的导数,记作f’(x0),函数f(x)在点x0处可导=f(x)在点x0具有导数或导数存在。

        函数在开区间I内可导(导函数):函数在开区间I内处处可导,这时,对于任意x∈I,都对应着f(x)的一个确定的导数值。这样就构成了一个新函数,这个函数叫做原来函数的f(x)的导函数。

        所以,函数f(x)在点x0处的导数f’(x0)就是导函数f‘(x)在点x=x0处的函数值。其中导函数f’(x)简称导数,而f‘(x0)是f(x)在x0处的导数或导数f’(x)在x0处的函数值。

        如果极限不存在,则函数在点x0处不可导。若不可导的原因是Δx趋于0时,因变量增量Δy与自变量增量Δx的比值趋于无穷大,此时也称函数f(x)在该点处的导数为无穷大。所以导数为无穷大也是函数不可导。

        几何意义:导数可以认为是曲线的切线的斜率。切线是割线的极限位置。

        由定义求导数:①列出增量;②作比值;③求极限。这种方法是推导基本初等函数的导数由来的证明方法。

2.单侧导数

        根据上面导数的定义,可知导数是一个极限,而极限存在的充分必要条件是左右极限存在且相等。所以导数在某点可导的充分必要条件是左右极限存在且相等。

        这两个极限分别被称为左导数右导数,统称为单侧导数

        所以现在可以说,函数f(x)在某点可导的充分必要条件是左右导数存在且相等,或者要求求出函数f(x)在某点的导数,要有左右导数存在且相等。

        如果函数f(x)在开区间(a,b)可导,且在a点的右导数和b点的左导数都存在,那么就说f(x)在闭区间[a,b]上可导。

3.切线,法线

        切线:有两种题型:一是在该点的切线:求出该点的导数,结合该点点坐标求出。而是求通过某点的切线,此时应设出切点坐标,然后按照第一题型结合已知点坐标继续求解。

        法线:斜率与切线斜率乘积为-1,由此求出法线斜率,结合点坐标即可求出。

4.可导性与连续性

        一是可导一定连续,二是连续不一定可导,即函数在某点连续是函数在该点可导的必要条件。

5.导数在经济学上的应用

        表示成本的函数称为成本函数,成本函数的导数称为边际(成本)函数。

        

        

        

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hedgeway

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值