1.导数的定义
导数是用来精确描述函数变化率的一个工具。
函数在一点x0处可导(导数): 因变量增量Δy与自变量增量Δx的比值在Δx趋于0时,极限A如果存在,A即为在x0处的导数,记作f’(x0),函数f(x)在点x0处可导=f(x)在点x0具有导数或导数存在。
函数在开区间I内可导(导函数):函数在开区间I内处处可导,这时,对于任意x∈I,都对应着f(x)的一个确定的导数值。这样就构成了一个新函数,这个函数叫做原来函数的f(x)的导函数。
所以,函数f(x)在点x0处的导数f’(x0)就是导函数f‘(x)在点x=x0处的函数值。其中导函数f’(x)简称导数,而f‘(x0)是f(x)在x0处的导数或导数f’(x)在x0处的函数值。
如果极限不存在,则函数在点x0处不可导。若不可导的原因是Δx趋于0时,因变量增量Δy与自变量增量Δx的比值趋于无穷大,此时也称函数f(x)在该点处的导数为无穷大。所以导数为无穷大也是函数不可导。
几何意义:导数可以认为是曲线的切线的斜率。切线是割线的极限位置。
由定义求导数:①列出增量;②作比值;③求极限。这种方法是推导基本初等函数的导数由来的证明方法。
2.单侧导数
根据上面导数的定义,可知导数是一个极限,而极限存在的充分必要条件是左右极限存在且相等。所以导数在某点可导的充分必要条件是左右极限存在且相等。
这两个极限分别被称为左导数和右导数,统称为单侧导数。
所以现在可以说,函数f(x)在某点可导的充分必要条件是左右导数存在且相等,或者要求求出函数f(x)在某点的导数,要有左右导数存在且相等。
如果函数f(x)在开区间(a,b)可导,且在a点的右导数和b点的左导数都存在,那么就说f(x)在闭区间[a,b]上可导。
3.切线,法线
切线:有两种题型:一是在该点的切线:求出该点的导数,结合该点点坐标求出。而是求通过某点的切线,此时应设出切点坐标,然后按照第一题型结合已知点坐标继续求解。
法线:斜率与切线斜率乘积为-1,由此求出法线斜率,结合点坐标即可求出。
4.可导性与连续性
一是可导一定连续,二是连续不一定可导,即函数在某点连续是函数在该点可导的必要条件。
5.导数在经济学上的应用
表示成本的函数称为成本函数,成本函数的导数称为边际(成本)函数。