微分,不定积分,定积分的简单理解

博客探讨了微积分中的积分概念,强调不定积分作为原函数的求导性质,以及定积分如何通过牛顿-莱布尼茨公式与面积计算相联系。内容涉及定积分的计算方法,包括上限函数的求导和复合函数的处理,指出定积分的结果是一个数值而非函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微分:原函数(不定积分的一个)求导

不定积分:多个原函数,or有限定条件下的一个原函数

定积分:不定积分的代值运算

>   (定积分是f与x轴围成面积,由牛顿-莱布尼茨公式将定积分和不定积分联系起来。

        Notice:不定积分结果是一个函数,而定积分结果是个数。)

>>求定积分先求出不定积分(原函数),再代值。

>>用N-L公式来理解积分上限函数积分上限函数的求导(定积分,定积分求导即被积函数,二次求导)。

>>定积分的定积分(未知数直接代入,同时注意是否是复合函数)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hedgeway

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值