古希腊数学家毕达哥拉斯在自然数研究中发现,220 的所有真约数(即不是自身的约数)之和为:
1+2+4+5+10+11+20+22+44+55+110=284
而 284 的所有真约数为 11、22、44、7171、142142,加起来恰好为 220。人们对这样的数感到很惊奇,并称之为亲和数。
一般地讲,如果两个数中任何一个数都是另一个数的真约数之和,则这两个数就是亲和数。
你的任务就编写一个程序,判断给出的两个整数m和n是不是亲和数(m和n可以相同)。
输入说明
输入为两个整数n和m,(1<n,m≤10000),n和m之间用空格分隔
输出说明
在同一行上输出为三项,用空格分隔。
第一项表示判断结果,如果两个数是亲和数输出yes,否则输出no;
第二项是一个整数,表示n的真约数个数;
第三项是一个整数,表示m的真约数个数。
测试样例
输入样例1:
220 284
输出样例1:
yes 11 5
输入样例2:
4 3
输出样例2:
no 2 1
#include<iostream>
using namespace std;
int main()
{
int n1,n2,sum1=0,sum2=0,cnt1=0,cnt2=0;
cin>>n1>>n2;
for(int i=1;i<=n1/2;i++)
if(n1%i==0)
{
sum1+=i;
cnt1++;
}
for(int i=1;i<=n2/2;i++)
if(n2%i==0)
{
sum2+=i;
cnt2++;
}
if(sum2!=n1||sum1!=n2)
cout<<"no"<<" ";
else
cout<<"yes"<<" ";
cout<<cnt1<<" "<<cnt2<<endl;
}