一个coze智能体项目总结

这一个项目我实现了一个简易的coze,pycharm,百度云的交互,实现了一个智能体能够识别你的语音来回答你的问题:

总页面:

当你再对话框里面输入想问的问题,上面的面板中可以回答你的问题:

main函数:

# 导入系统相关模块,用于处理命令行参数等
import sys
# 导入PySide6的QtWidgets模块,用于创建GUI应用程序
from PySide6.QtWidgets import QApplication, QMainWindow
# 导入自定义的AI_botImpl类,该类实现了AI机器人的具体功能
from chatImpl import chatImpl



if __name__ == '__main__':
    app = QApplication(sys.argv) # 创建应用
    mw = QMainWindow() # 创建窗口
    impl = chatImpl(mw) # 创建窗口实现,传入窗口
    mw.show() # 显示窗口
    sys.exit(app.exec())  # 进入QT事件循环

导入需要的模块::

import chat
import os
import pyaudio
from coze import Coze
from aip import AipSpeech
import pygame
import tempfile
from PySide6.QtCore import QDateTime, QThread, Signal, Slot

初始化百度云的 APP_ID、API_KEY 和 SECRET_KEY,AipSpeech 客户端:

BAIDU_APP_ID = '110832408'
BAIDU_API_KEY = '55mANs1Q452ZOTvVmhfmmucy'
BAIDU_SECRET_KEY = 'qlG6V7UOSb4A2ne2oEEXayNgMd2K2VQq'
os.environ['COZE_API_TOKEN'] = 'pat_K2wcW1yYfsVIK4XxXVUsey6SeIlnqKi0UuNM5MzUaimHZuC5BbTWGoy5Y8Ogq5pq'
os.environ['COZE_BOT_ID'] = "7407351574039363647"

# 初始化 AipSpeech 客户端
aip_client = AipSpeech(BAIDU_APP_ID, BAIDU_API_KEY, BAIDU_SECRET_KEY)

在单独的线程中处理发送给 Coze 平台的消息,并通过信号将回复传递给主线程。

class CozeThread(QThread):
    # 定义一个信号,用于在线程内部发送消息到主线程
    message_received = Signal(str)

    def __init__(self, message):
        # 线程初始化
        super().__init__()
        # 存储接收到的消息
        self.message = message

    def run(self):
        # 初始化与Coze平台的聊天接口
        chat = Coze(api_token=os.environ['COZE_API_TOKEN'],
                    bot_id=os.environ['COZE_BOT_ID'],
                    max_chat_rounds=20,
                    stream=True)
        # 使用聊天接口处理存储的消息
        res = chat(self.message)
        # 将处理后的消息通过信号发送出去
        self.message_received.emit(res)
在单独的线程中将音频数据转换为文本
class SpeechToTextThread(QThread):
    # 定义一个信号,用于在线程中发送识别到的文本
    text_received = Signal(str)

    def __init__(self, audio_data):
        super().__init__()
        self.audio_data = audio_data

    def run(self):
        """
        线程运行方法。

        通过调用语音识别API将音频数据转换为文本,并通过信号发送识别结果。
        """
        # 调用百度语音识别API进行语音识别
        result = aip_client.asr(self.audio_data, 'wav', 16000, {'dev_pid': 1537})
        # 提取识别结果文本,若无结果则默认为空字符串
        text = result['result'][0] if 'result' in result else ""
        # 通过信号发送识别到的文本
        self.text_received.emit(text)
在单独的线程中将文本转换为语音并播放。
class TextToSpeechThread(QThread):
    def __init__(self, text):
        super().__init__()  # 调用基类QThread的构造方法初始化线程。
        self.text = text  # 保存传入的文本内容。

    def run(self):
        # 调用百度AI客户端的合成方法,将文本转换为语音数据。
        result = aip_client.synthesis(self.text, 'zh', 1, {'vol': 5, 'per': 0})

        # 如果转换结果不是字典类型(字典类型通常表示发生错误),则继续处理语音数据。
        if not isinstance(result, dict):
            # 创建一个临时文件,用于保存语音数据,并写入语音数据。
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
                temp_file.write(result)
                temp_file_path = temp_file.name  # 获取临时文件的路径。
            # 调用播放音频方法,播放保存在临时文件中的语音。
            self.play_audio(temp_file_path)

    def play_audio(self, file_path):
        pygame.mixer.init()  # 初始化pygame的混音器。
        pygame.mixer.music.load(file_path)  # 加载指定路径的音频文件。
        pygame.mixer.music.play()  # 播放音频文件。

        # 循环等待直到音频播放完毕。
        while pygame.mixer.music.get_busy():
            pygame.time.Clock().tick(10)
实现应用程序的主要逻辑,包括发送消息、录音、处理语音转文字的结果以及展示回复。
class chatImpl(chat.Ui_MainWindow):

    # 初始化方法,用于设置UI界面和绑定事件处理函数。
    def __init__(self, window):
        super().__init__()
        self.setupUi(window)
        self.pushButton.clicked.connect(self.sendMessage)
        self.pushButton_2.clicked.connect(self.recordAudio)




        self.coze_thread = None
        self.speech_to_text_thread = None
        self.text_to_speech_thread = None

    # 发送消息方法
    def sendMessage(self):
        # 获取用户输入的消息
        message = self.textEdit.toPlainText()
        if message:
            # 生成当前时间的时间戳
            timestamp = QDateTime.currentDateTime().toString()

            # 构造HTML格式的消息,包括头像、消息内容和时间
            html_message = f"""
            <div style="text-align: right; margin-bottom: 10px;">
                <img src="D:/Python Code/fs.code/python基础/企业级聊天客服智能体机器人/images/男头像.png" style="width: 50px; height: 50px; object-fit: cover;"/><br/>
                <span style="font-size: 10px; color: black;">{timestamp}</span><br/>
                <div style="background-color: #e0e0e0; border-radius: 10px; padding: 5px; max-width: 300px; display: inline-block;">
                    {message}
                </div>
                <div style="clear: both;"></div>
            </div>
            """
            # 将HTML格式的消息添加到文本浏览器中显示
            self.textBrowser.append(html_message)
            # 创建一个CozeThread实例,传递当前消息给线程
            self.coze_thread = CozeThread(message)
            # 当线程接收到消息时,连接到displayResponse方法进行处理
            self.coze_thread.message_received.connect(self.displayResponse)
            # 启动线程,开始执行线程中的任务
            self.coze_thread.start()
            # 清空文本编辑区域的内容,准备下一次输入
            self.textEdit.clear()

项目背景

随着人工智能技术的快速发展,我们旨在开发一款名为Coze的智能体,以提供更加个性化和自动化的用户体验。Coze智能体能够通过自然语言处理与用户进行交互,并执行一系列预设任务,如日程管理、信息检索和简单的数据分析。

项目目标

  • 开发一个能够理解自然语言并执行任务的智能体。
  • 实现与PyCharm集成,以辅助开发人员自动执行常见的编程任务。
  • 利用百度云服务进行数据存储和处理。

实施过程

技术选型

  • 编程语言:Python。
  • 开发环境:PyCharm。
  • 云服务:百度云。

### Coze智能体系统开发概述 Coze智能体系统的开发涉及多个方面,包括但不限于Python编程、AI开发环境配置以及特定于Coze框架的设计理念和技术实现。对于希望深入了解并着手构建Coze智能体的应用开发者而言,掌握这些基础知识至关重要[^2]。 ### Python快速入门与环境搭建 为了能够顺利开展Coze智能体项目,在开始之前需先熟悉Python这门语言及其生态系统。通过学习基本语法结构、数据处理方法等内容,可以打下坚实的基础;与此同时,安装必要的软件包和工具链也是不可或缺的一环,比如Anaconda这样的集成化科学计算平台就非常适合用来创建隔离的工作空间来管理依赖项版本控制等问题。 ### 提示词工程与Prompt设计 在实际操作过程中,合理利用提示词(Prompts),即向模型输入自然语言指令以引导其生成预期输出的能力显得尤为重要。通过对不同场景下的对话模式进行分析总结,并不断优化调整所使用的模板样式,可以使最终效果更加贴近真实需求,提高用户体验满意度水平。此外,还应关注如何有效评估反馈质量的好坏标准制定等方面的知识点。 ### Transformer架构解析 作为当前主流的大规模预训练模型背后的核心算法之一——Transformers家族成员们凭借自注意力机制实现了序列建模效率上的巨大飞跃。深入理解该类网络内部运作机理有助于更好地把握后续微调阶段可能遇到的技术难点所在之处,从而采取针对性措施加以解决。具体来说,可以从多头注意力建设、位置编码引入等多个角度切入探讨这个问题。 ### 预训练、SFT及RLHF技术要点 针对特定领域任务定制专属解决方案往往离不开对已有资源的有效再利用过程。在此背景下,“迁移学习”的概念便应运而生:一方面可以通过加载通用型大规模语料库上预先训练好的权重参数初始化新建立起来的小样本集对应的神经元连接关系;另一方面则借助强化学习等手段进一步提升目标函数收敛速度的同时保持泛化性能不下降甚至有所改善的趋势发展态势不变。上述提到的各种策略均能在一定程度上帮助我们更高效地完成整个流程中的各个子环节工作内容安排部署计划表编制等工作事项落实到位情况跟踪记录统计汇总报告撰写发布等一系列复杂而又繁琐的任务清单条目逐一核销完毕为止。 ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-chinese') model = AutoModelForSequenceClassification.from_pretrained('bert-base-chinese') def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) logits = outputs.logits prediction = torch.argmax(logits).item() return prediction ``` ### 大模型核心原理探究 除了上述提及到的具体技术和实践指导外,《用Coze开发智能体》一书中也涵盖了关于大型深度学习模型本身特性的详尽介绍部分。例如说为什么现在越来越多的研究人员倾向于采用更大规模的数据集来进行实验验证?又或者是什么因素决定了某个给定条件下所能达到的最佳表现极限在哪里等等这些问题都值得每一位想要在这个方向深耕细作的人都去思考探索一番。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洋葱土豆和香菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值