基于图嵌入的兵棋联合作战态势实体知识表示学习方法

基于图嵌入的兵棋联合作战态势实体知识表示学习方法

人工智能技术与咨询 

图片

来源:《指挥控制与仿真》,作者王保魁等

摘 要:为将基于离散符号的兵棋联合作战态势实体知识表示为机器更加容易学习、处理和应用的形式,根据兵棋联合作战态势实体知识的特点,提出一种基于图嵌入的兵棋联合作战态势实体知识表示学习方法。该方法采用基于元路径的多层异构图嵌入模型,对想定场景中的兵棋联合作战态势实体及其关系知识进行表示学习,将其映射为连续向量空间中的稠密实值向量,从而有效揭示兵棋联合作战态势实体之间的全局隐含特征,为大规模联合作战态势知识的获取、融合与推理奠定良好基础。实验结果表明,基于图嵌入的兵棋联合作战态势实体知识表示学习方法针对性强,对于评估指标提升较大,为复杂兵棋联合作战态势知识的表示学习提供了可行范例。

关键词:兵棋;联合作战态势知识;图嵌入;知识表示学习;元路径

联合作战态势是联合作战时空、信息、表征和不确定性等多重复杂因素综合作用的结果,是联合作战复杂性的外在表现[1]。对反映联合作战态势的实体知识进行客观准确表征,是研究联合作战态势的基础和前提,其核心和要点在于描绘联合作战态势实体之间的复杂关联关系[2]。作战大数据是联合作战态势知识的主要来源,具有海量、稀疏和结构复杂等特点[3]。联合作战态势知识表示是在特定场景范围内,针对联合作战态势实体和关系进行建模,使得机器可以学习、处理和运用各种联合作战态势知识[4]。传统基于离散符号的联合作战态势知识表示方法善于表征显性的形式化作战态势知识,但计算效率低下,不易融合扩展。需要进一步深入探索联合作战态势实体知识的非形式化表示方法,将联合作战态势知识表示为机器易于计算、学习和处理的形式,为智能指挥决策提供坚实的基础知识支撑[5]。

联合作战态势实体知识表示学习是面向联合作战态势知识中的实体及其关系知识进行表示学习,将联合作战态势知识中的实体、属性及其关联关系表示为连续向量空间中的稠密实值向量,使得机器可以高效学习、处理和运用各种联合作战态势实体知识。其本质是在低维向量空间中对符号化的联合作战态势实体及其关系语义知识进行向量化重构,从而提高知识计算效率,实现异构信息融合,有效缓解数据稀疏带来的诸多知识计算难题,有效提升联合作战态势知识获取、融合、推理的性能[6]。因此,在知识表示学习过程中保证联合作战态势知识的结构信息以及实体和关系的语义描述信息不失真,确保从离散符号向连续向量映射的准确性显得极为重要。由于联合作战态势实体知识的异构性特征和层次化特点,对于联合作战态势实体知识的表示学习主要存在两方面挑战:一是联合作战态势实体之间可能存在不同类型的连接关系,使得联合作战态势实体知识难以进行统一嵌入表达;二是作为联合作战态势实体关系连接服从幂率分布,存在大量拥有少量邻居节点的联合作战态势实体节点,此类实体节点难以有效表征。

兵棋作为一种特殊的战争模拟系统,是研究智能化作战的重要工具和手段,也是检验军事智能技术和探索军事智能应用的最佳平台,可为联合作战态势实体知识的表示学习研究提供了重要依托。本文依托兵棋推演平台,以兵棋联合作战想定场景中的态势实体、属性及其关系为基础,提出一种基于元路径的多层异构兵棋联合作战态势实体知识表示学习方法,通过设计合理的兵棋联合作战态势实体知识元路径模式,利用兵棋联合作战态势实体丰富的属性信息和不同实体类型的多层拓扑结构信息,力图捕捉兵棋联合作战态势实体知识的多层异构网络结构信息和实体语义关联信息,从而有效提升基于离散向量的联合作战态势知识的表征能力。实验结果表明,在联合作战态势实体关系推理任务中,本文提出的算法性能更佳。

1 图嵌入概述

图嵌入(Graph Embedding)也称网络嵌入(Network Embedding)或图表示学习(Graph Representation Learning)。其通过将信息网络嵌入低维向量空间,实现网络实体分类、关系推理和社团检测等任务。基于图嵌入的兵棋联合作战态势实体知识表示学习是下游深度学习和多关系型联合作战大数据挖掘任务的基础。根据图的网络结构特性不同,目前的图嵌入模型研究主要集中在同质网络嵌入、异构网络嵌入和多层异构网络嵌入三个方面。

1.1 同质网络嵌入

同质网络(Homogeneous Network)中互相连接的实体和关系类型倾向于具有更多的相似性。DeepWalk[7]模型采用无监督特征学习技术,通过随机游走的方式,从信息网络中的某个节点开始生成文本序列,然后,采用Skip-Gram模型训练得到网络节点的词向量。LINE[8]模型为解决大规模网络嵌入问题,将节点的一阶相似性与二阶相似性引入目标函数,能够更加灵活地对信息网络的局部结构和全局结构特征进行知识表示学习。与DeepWalk模型相比,LINE模型适用范围更广,可用于有/无向图,以及有/无权图的知识表示学习。node2vec[9]模型灵活定义了节点网络邻居概念,设计了一个偏置随机游走过程,通过综合考虑深度优先和广度优先搜索,实现了对邻居实体的有效探索,从而学习到了更加丰富的实体知识表示信息。SDNE[10]模型为应对图嵌入知识表示的高度非线性、结构特征保持和网络稀疏难题等挑战,采用半监督深度学习模型,通过设计合理的目标函数保留网络结构的局部和全局信息,并对稀疏网络具有鲁棒性。图神经网络(GNN)是一种基于图结构的深度学习模型,其目标是学习包含邻居信息的节点状态嵌入向量[11]。GCN[12]模型是一种基于卷积神经网络(CNN)的图结构数据半监督学习方法,受图谱卷积局部结构一阶相似选择的启发,将图的结构特征和节点的特征信息共同编码进行知识表示学习。GraphSAGE[13]模型提出了一个通用的归纳框架,有效利用网络节点的特性信息为以前未见过的实体节点生成嵌入向量。与以往为每个实体节点单独训练嵌入向量不同的是,GraphSAGE模型提供了一个通过从实体节点的本地邻居中采样和聚集特性来生成嵌入向量的函数。

1.2 异构网络嵌入

异构网络(Heterogeneous Network)相对于同质网络而言,网络中的实体节点或边具有多种类型。由于异构网络中实体节点和边类型的多样性特征,其网络特性挖掘和网络表示学习的难度较大。PTE[14]模型提供了一种用于文本数据的半监督预测性文本嵌入方法。首先将标记信息和不同层次的词共现信息表示为一个大规模的异构文本网络,然后将其嵌入到一个低维向量空间中。PTE模型不仅保留了单词和文档的语义相近性,而且对特定任务具有很强的预测能力。m

基于神经网络GraphVAE的兵棋态势预测方法是一种利用神经网络模型GraphVAE对兵棋棋盘的状态进行预测的方法。 首先,我们需要将兵棋棋盘视为一个结构,其中每个棋子视为一个节点,节点之间的连接表示棋子之间的关系,如相邻的棋子或者某种特定的攻击关系。然后,我们利用GraphVAE模型对这个结构进行训练。 GraphVAE是一种能够对结构进行生成的神经网络模型,它能够学习结构中隐含的特征,并且能够生成具有相似特征的新结构。在训练阶段,我们将大量的兵棋棋盘状态作为输入,通过GraphVAE模型进行训练,使其学习兵棋棋盘状态的特征表示。 在预测阶段,我们可以将待预测的兵棋棋盘状态作为输入,通过GraphVAE模型生成一个新的结构。根据这个新的结构,我们可以推断出兵棋棋盘状态的特征以及可能的变化趋势。通过分析这些特征和趋势,我们可以预测出兵棋棋盘的未来状态和可能的走法。 基于神经网络GraphVAE的兵棋态势预测方法具有以下优点:首先,它能够利用结构的丰富信息进行预测,比传统的模型更能够捕捉到棋盘状态之间的关系;其次,通过使用GraphVAE模型,我们可以生成具有相似特征的新结构,从而可以进行多样化的预测。不过,需要注意的是,该方法需要大量的训练数据来训练GraphVAE模型,并且对于复杂的兵棋棋局预测可能存在一定的误差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值