基于对抗生成网络的滚动轴承故障检测方法

人工智能技术与咨询

点击蓝字 · 关注我们

来源:《人工智能与机器人研究》 ,作者华丰

关键词: 不平衡工业时间序列;异常检测;生成对抗网络;滚动轴承数据

关注微信公众号:人工智能技术与咨询。了解更多咨询!

摘要:

  摘要: 在工业系统中普遍存在样本数据不平衡现象,正常样本数量远远大于异常样本数量。而传统的机器学习算法和深度学习方法,例如朴素贝叶斯和支持向量机,在处理类不平衡问题时,很难获得较高的识别分类准确率,因为它们往往会偏向保证多数类的准确率。为此,本文提出了一种基于生成对抗网络(GAN)的异常检测方法。这个方法中的生成器结构是“编码器–解码器–编码器”的三子网,并且训练该生成器只需要从正常样本中提取特征,所以训练数据集中就不需要异常样本。此系统的异常检测结果由样本的最终得分来判别,其中异常分数由表观损失和潜在损失组成。本文方法的亮点在于可以实现在无异常样本训练的情况下对异常数据样本做检测,通过系统生成更高的异常分数来诊断故障。本项目在凯斯西储大学(CWRU)获得的基准滚动轴承数据集上验证了该方法的可行性和有效性。本文提出的方法在数据集中区分异常样本与正常样本的准确率达到了100%。

1. 项目介绍

异常检测对于现代工业系统的可靠性和安全性至关重要。及时准确的异常检测有助于预防重大事故的发生,提高生产效率。然而,工业生产中数据类不平衡的情况比较严重,在正常条件下的样本比在异常条件下的样本普遍得多,为准确诊断工业设备故障造成了巨大的障碍。此外,工业系统总是具有非线性和不确定性,这对模型训练提出了很大的挑战 [1]。

工业异常检测的数据一般是不同传感器在一定时间内记录的电流、温度等物理信号,也称为时间序列。对于工业异常检测领域,时间序列通常作为训练模型的输入数据 [2]。一般以时间序列为输入,异常检测框架通常分为特征提取和故障识别两个阶段。通过特征提取算法,将时间序列预处理为低维特征向量,送入故障检测器进行故障检测 [3]。机器学习算法作为一种强大的异常检测模式识别工具,已经成为关注的焦点,包括贝叶斯分类器、支持向量机方法等 [4]。上述方法都是假设基于类平衡的情况,然而当数据分类不平衡时这些方法难以获得较高的精度 [5]。除了数据集的类均衡假设外,标记数据也是训练阶段机器学习算法的关键。然而,在许多实际的工业系统中,来自异常情况下的样本数量往往很少。另外,当系统在正常状态下运行了很长一段时间后,突然出现异常,要准确定位异常的发生时间是极其困难的 [6]。因此,不准确的异常标签也会对异常检测的准确性产生不利的影响。

当正常和异常的标签不平衡时,机器学习方法的分类器会牺牲少数类来保证多数类的准确性,这意味着分类结果会偏向于测试样本整体的正态性 [5]。但是,对于工业系统中的异常检测,我们应该特别关注那些处于少数情况的类,如何能够准确捕捉和判别异常数据是当前工业系统中异常检测的重点。在2014年,由Goodfellow等人提出的生成对抗网络(GAN)为解决工业中类不平衡问题提供了一个新的思路。这个网络模型最先出现在“Generative Adversarial Networks”一文中,起初它被用于图像识别领域,并取得了卓越的成绩 [7]。GAN的基本思想是通过一个具有随机数据点的生成器生成原型样本,这些随机数据点满足一定的分布(如高斯分布)。在图像的异常诊断领域,已经有一些基于GAN的具有竞争力的网络架构被提出,如AnoGAN [8] 、BiGAN [9] 和GANomaly [10]。这些基于GAN的方法只训练正常图像的模型,根据正常图像和异常图像的特征分布差异来区分异常图像。从这一点出发,基于GAN的模型对于学习和识别不平衡数据集是有效的,可以防止诊断结果偏向于多数类。然而,在工业应用中,基于GAN的异常检测方法非常少见。经过类似项目的调查研究,发现依次有基于GAN网络的机械故障检测方法 [11] 和基于GA

  • 2
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值