数学建模 | 第一章 线性规划

🐈1.1 线性规划问题

🐈‍⬛1.1.1 线性规划的定义

🐱线性规划问题:指在一组线性约束条件的限制下,求一组线性目标函数最大或最小的问题

在解决实际问题时,把问题归结成一个线性规划数学模型时很重要的一步,模型建立的是否恰当直接影响到求解,选择适当的决策变量是建立有效模型的关键之一。线性规划问题中目标函数和约束条件都是线性的。

🐱三个要素:目标函数、约束条件、决策变量

  • 目标函数:可以是求最大值,也可以是求最小值;【max或min】

  • 约束条件:不等号可以是小于等号也可以是大于等号;【s.t.】

  • 决策变量:线性规划问题中影响目标值(最大最小值)的变量。【x1,x2,…】

🐈‍⬛1.1.2 线性规划问题的解的概念

🐱一般线性规划问题的标准型

在这里插入图片描述

式中:bi>=0;i=1,2,…,m

🐱可行解

  • 满足约束条件s.t.的解 x x x = = =[ x x x1,…, x x xn]T 称为线性规划问题的可行解, 而使目标函数达到最大值的可行解叫最优解。

🐱可行域

  • 所有可行解构成的集合称为问题的可行域,记为R 。

🐈‍⬛1.1.3 线性规划的Matlab标准形式及求解

🐱Matlab中线性规划的标准形式

Matlab中线性规划的标准形式

式中:c,x,b,beq,lb,ub为列向量,其中c称为价值向量,b称为资源向量,A、Aeq为矩阵

!!!记住标准形式是求最小值!!!

🐱Matlab中求解线性规划的命令

[x,fval] = linprog(c,A,b)

[x,fval] = linprog(c,A,b,Aeq,beq)

[x,fval] = linprog(c,A,b,Aeq,beq,lb,ub)

🦈式中:
x 返回决策变量的取值,
fval 返回目标函数的最优值,
c 为价值向量;
A和b 对应线性不等式约束;
Aeq和beq 对应线性等式约束;
lb和ub 分别对应决策向量的下界向量和上界向量(即最优解的范围)

🐱例题

➡️例1:求解下列线性规划问题

线性规划问题1

👀答案:求得的最优解为x1=6.4286,x2=0.5714,x3=0,对应的最优值z=14.5714

求解的Matlab程序:

c=[-2;-3;5]; 
a=[-2,5,-1;1,3,1]; 
b=[-10;12]; 
aeq=[1,1,1]; 
beq=7; 
[x,y]=linprog(c,a,b,aeq,beq,zeros(3,1)) 
x,y=-y 
% 最终解加负号,转换为最大值

求解的Lingo程序:

model:

sets:
row/1..2/:b;
col/1..3/:c,x;
lingks(row,col):a;
endsets

data:
c = 2 3 -5;
a = -2 5 -1 1 3 1;
b = -10 12;
enddata

max=@ sum(col:c*x);
@ for(row(i):@ sum(col(j):a(i,j)*x(j))<b(i));
@ sum(col:x)=7;

end 

➡️例2:求解下列线性规划问题

线性规划问题2

👀答案:求得的最优解为x1=0.8066,x2=1.7900,x3=0.0166,对应的最优值z=7.0000

求解的Matlab程序:

c=[2;3;1]; 
a=[1,4,2;3,2,0]; 
b=[8;6];  
[x,y]=linprog(c,-a,-b,[],[],zeros(3,1)) %这里没有等式约束,所以为两个【】【】

求解的Lingo程序:

model:

sets:
row/1..2/:b;
col/1..3/:c,x;
lingks(row,col):a;
endsets

data:
c = 2 3 1;
a = 1 4 2 3 2 0;
b = 8 6;
enddata

min=@ sum(col:c*x);
@ for(row(i):@sum(col(j):a(i,j)*x(j))>b(i));

end 

🐈‍⬛1.1.4 可以转化为线性规划的问题

🐱类型一

转化类型一

🐱类型二
转化类型二
➡️例题:求解下列数学规划问题

数学规划问题

👀答案:求得的最优解为x1=-2,x2=x3=x4=0,对应的最优值z=2

求解的Matlab程序:

clc,clear %清空数据防止干扰
c=1:4; c=[c,c]'; %构造价值列向量
a=[1 -1 -1 1;1 -1 1 -3;1 -1 -2 3];
a=[a,-a]; %构造变换后新的系数矩阵
b=[-2 -1 -1/2]';
[y,z]=linprog(c,a,b,[],[],zeros(8,1)) %这里没有等式约束,对应的矩阵为空矩阵
x=y(1:4)-y(5:end) %变换到原问题的解,x=u-v

求解的Lingo程序:

model:

sets:
col/1..4/:c,x;
row/1..3/:b;
links(row,col):a;
endsets

data:
c=1 2 3 4;
b=-2 -1 -0.5;
a=1 -1 -1 1 1 -1 1 -3 1 -1 -2 3;
enddata

min=@ sum(col:c*@ abs(x));
@ for(row(i):@ sum(col(j):a(i,j)*x(j))<b(i));
@ for(col:@ free(x)); !x的分量可正可负

end

🐈1.2 整数线性规划

🐈‍⬛1.2.1 整数规划的定义

数学规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型中,变量限制为整数,则称为整数线性规划。

🐈‍⬛1.2.2 整数规划的分类

如不加特殊说明,则一般指整数线性规划。整数线性规划模型大致可分为两类:

  • 变量全限制为整数时,称纯(完全)整数规划。
  • 变量部分限制为整数时,称混合整数规划。

🐈‍⬛1.2.3 整数规划的特点

  • 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况。
    • 原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
    • 整数规划无可行解。
    • 整数规划有可行解,但最优解变差
  • 整数规划最优解不能按照实数最优解简单取整而获得

🐈‍⬛1.2.4 整数线性规划的Matlab数学模型及求解

🐱Matlab中整数线性规划的标准形式

Matlab中整数线性规划的数学模型

式中: f f f x x x,intcon, b b b,beq,lb,ub为列向量; A A A,Aeq为矩阵

🐱Matlab中求解线性规划的命令

[x,fval] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

🐈1.3 线性规划问题模型(重点)✨

🐈‍⬛1.3.1 运输问题

运输问题模型描述:某商品有m 个产地、n个销地,各产地的产量分别为a1,a2,…,am,各销地的需求量分别b1,b2,…,bn。若该商品由i产地运到j销地的单位运价为cij,问应该如何调运才能使总运费最省?

(引入变量xij,其取值为由i产地运往j销地的该商品数量)

(1)产销平衡: ∑ i = 1 m a i \sum\limits_{i=1}^m{a_i} i=1mai= ∑ j = 1 n b j \sum\limits_{j=1}^n{b_j} j=1nbj
产销平衡

(2)产销不平衡: ∑ i = 1 m a i \sum\limits_{i=1}^m{a_i} i=1mai> ∑ j = 1 n b j \sum\limits_{j=1}^n{b_j} j=1nbj
产销不平衡

🐈‍⬛1.3.2 对偶理论

对偶问题

对偶问题的性质:

  1. 对称性:对偶问题的对偶是原问题。
  2. 弱对偶性:若 x ‾ \overline{x} x是原问题的可行解, y ‾ \overline{y} y是对偶问题的可行解。则存在cT x ‾ \overline{x} x<bT y ‾ \overline{y} y
  3. 无界性:若原问题(对偶问题)为无界解,则其对偶问题(原问题)无可行解。
  4. 可行解是最优解时的性质:设x是原问题的可行解,y是对偶问题的可行解,当cTx=bTy时,x、y是最优解。
  5. 对偶定理:若原问题有最优解,那么对偶问题也有最优解;且目标函数值相同。
  6. 互补松弛性:若x、y分别是原问题和对偶问题的最优解,则 yT(Ax-b)=0,xT(ATy-c)=0

相关学习博客:https://blog.csdn.net/LoraRae/article/details/115858297
(感谢大佬!!!)

🐈‍⬛1.3.3 0-1型整数规划

🐱1.3.3.1 相互排斥的约束条件

如果有m个互相排斥的约束条件:

ai1x1+…+ainxn<=bi,i=1,2,…,m

为了保证这m个约束条件只有一个起作用,引入m个0-1变量

y i = { 1 , 第 i 个约束起作用 0 , 第 i 个约束不起作用 y_i=\begin{cases}1, 第i个约束起作用\\0, 第i个约束不起作用\\ \end{cases} yi={1,i个约束起作用0,i个约束不起作用
i i i=1,2,…,m

再引入一个充分大的常数M,则下面这一组m+1个约束条件符合上述要求

ai1x1+…+ainxn<=bi+(1-yi)M,i=1,2,…,m,
y1+…+ym=1

🐱1.3.3.2 固定费用问题

固定费用问题模型描述:某工厂为了生产某种产品,有几种不同的生产方式可供选择,如选定的生产方式投资高(选购自动化程度高的设备),由于产量大,因而分配到每件产品的变动成本就降低;反之,如选定的生产方式投资低,将来分配到每件产品的变动成本可能增加。所以,必须全面考虑。设有j种方式可供选择,xj表示采用第j种方式时的产量;cj表示采用第j种方式时每件产品的变动成本;kj表示采用第j种方式时的固定成本。
(非纯max或者min型,改变为混合整数规划)

固定费用问题

🐱1.3.3.3 指派问题

指派问题模型描述:拟分配n人去做n项工作,每人做且仅做一项工作,若分配第i人去做第j项工作,需花费cij单位时间,问应如何分配工作才能使工人花费的总时间最少?
(引入0-1变量x,若分配第i人做第j项工作,则取xij=1;若分配第i人不做第j项工作,则取xij=0。)

要给出一个指派问题的实例,只需给出矩阵C=(cij),C被称为指派问题的系数矩阵

上述指派问题的数学模型为:
指派问题的数学模型

上述指派问题的可行解可以用一个矩阵表示,其每行每列均有且只有一个元素为 1,其余元素均为 0;可以用 1,…,n 中的一个置换表示。

🐈‍⬛1.3.4 蒙特卡洛法(随机取样法)

蒙特卡洛方法也称为计算机随机模拟方法,它源于世界著名的赌城一一摩纳哥的Monte Carlo(蒙特卡洛)。它是基于对大量事件的统计结果来实现一些确定性问题的计算。使用蒙特卡洛方法必须使用计算机生成相关分布的随机数。

尽管整数规划由于限制变量为整数而增加了难度;又由于整数解是有限个,于是为枚举法提供了方便。当然,在自变量维数很大和取值范围很宽的情况下,企图用显枚举法(即穷举法)计算出最优值是不现实的,但是应用概率理论可以证明,在一定计算量的情况下,用蒙特卡洛法完全可以得出一个满意解。

🐈‍⬛1.3.4 投资的收益和风险

🐱1.3.4.1 问题提出

问题提出

🐱1.3.4.2 符号规定和基本假设

符号规定

🐱1.3.4.3 模型的分析与建立

模型建立

🐱1.3.4.4 模型简化

在这里插入图片描述

🐱1.3.4.5 模型一的求解

模型一为:min f = [ − 0.05 , − 0.27 , − 0.19 , − 0.185 , − 0.185 ] ⋅ [ x   0   , x   1   , x   2   , x   3   , x   4   ] f=[-0.05,-0.27,-0.19,-0.185,-0.185]·[x~0~,x~1~,x~2~,x~3~,x~4~] f=[0.05,0.27,0.19,0.185,0.185][x 0 ,x 1 ,x 2 ,x 3 ,x 4 ]T
模型一求解
由于a是任意给定的风险度,不同的投资者有不同的风险度。下面从a=0开始,以步长0.001进行循环搜索,编制的程序如下:

​​​​​​​​clc,clear 
a=0; 
hold on 
while a<0.05     
    c=[-0.05,-0.27,-0.19,-0.185,-0.185];     
    A=[zeros(4,1),diag([0.025,0.015,0.055,0.026])];     
    b=a*ones(4,1);     
    Aeq=[1,1.01,1.02,1.045,1.065];     
    beq=1;     
    LB=zeros(5,1);     
    [x,Q]=linprog(c,A,b,Aeq,beq,LB);     
    Q=-Q;     
    plot(a,Q,'*r');     
    a=a+0.001; 
end 
xlabel('a'),ylabel('Q') 

🐱1.3.4.6 结果分析

结果分析

😶‍🌫️各模型例题以及相关拓展习题详见数学建模习题博客专栏

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值