CUDA和cuDNN的安装

一、准备

(1)查看电脑支持CUDA版本

方法一,命令符查看

1.同时点击win+r,输入cmd点击“确定”,进入终端窗口,输入nvidia-smi(注意无空格)查看CUDA版本

 方法二,nvidia控制面板查看

### 安装 CUDA cuDNN #### Linux 系统上的安装过程 对于Linux系统,安装CUDAcuDNN的过程涉及几个关键步骤。确保下载与系统架构相匹配的版本[^1]。 首先,通过访问NVIDIA官方网站获取适合系统的CUDA Toolkit版本。完成下载后,按照官方文档指导执行安装命令。通常情况下,这涉及到运行安装脚本或使用包管理器进行安装: ```bash sudo dpkg -i cuda-repo-ubuntu2004_11.4.1-1_amd64.deb # 示例命令,具体取决于所选版本 sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub sudo apt-get update sudo apt-get install cuda ``` 接着,为了使环境变量生效,在`~/.bashrc`文件中添加如下路径设置: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH source ~/.bashrc ``` 随后,针对cuDNN部分,同样需前往NVIDIA官网下载对应于已安装CUDA版本的cuDNN库,并解压至指定位置。最后一步是复制必要的动态链接库到CUDA目录下以便程序调用[^3]: ```bash tar -xzvf cudnn-linux-x86_64-*.*.*_*-archive.tar.xz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` #### Windows 系统上的安装指南 在Windows环境下,推荐采用图形界面方式进行CUDA工具包的部署。启动安装向导前,请确认计算机硬件支持DirectX 12及以上标准以及拥有至少4GB显存的GPU设备。遵循提示逐步完成整个流程即可成功配置开发环境。 至于cuDNN,则可通过ZIP压缩包形式提供给用户自行提取至相应路径;注意保持两者版本间的兼容性关系[^2]。 #### macOS 上的操作建议 由于macOS自带Metal API作为替代方案,因此原生支持并不理想。不过借助虚拟机或者双系统解决方案仍然可行实现上述功能需求。值得注意的是,苹果M系列芯片目前仅限特定条件下才能有限度地发挥CUDA效能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值