【机器学习】PCA-奇异值分解-上采样与下采样-傅里叶变换

1. PCA 主成分分析

主成分分析(PCA)是一种常用的数据降维方法。
它通过找到数据中方差最大的方向(主成分),将原始高维数据映射到较低维空间,同时尽可能保留原始信息。

数学实现上,通常通过协方差矩阵的特征值分解或**奇异值分解(SVD)**来完成。主成分对应特征值最大的特征向量。


2. 奇异值分解(SVD)

奇异值分解(Singular Value Decomposition, SVD)将任意矩阵 AAA 分解为:

用途包括:PCA、图像压缩、低秩逼近、矩阵去噪等。
奇异值大小反映了数据的“能量”分布。


3. 上采样与下采样

上采样(Upsampling):将数据尺寸放大,如将 32×32 图像放大成 64×64。常见方法有:

  • 最近邻插值

  • 双线性插值

  • 转置卷积(反卷积)

下采样(Downsampling):将数据尺寸缩小,如 64×64 → 32×32,常见方法有:

  • 最大池化(Max Pooling)

  • 步长卷积(Stride > 1)

  • 平均池化(Average Pooling)

上采样用于恢复空间信息;下采样用于压缩特征、加快计算。


4. 傅里叶变换(Fourier Transform)

傅里叶变换用于将时域信号转换为频域表示,揭示信号中的频率成分。

  • 连续傅里叶变换:适用于连续信号

  • 离散傅里叶变换(DFT):数字信号分析工具

  • 快速傅里叶变换(FFT):高效实现 DFT 的算法

在图像处理中,用于:

  • 边缘检测

  • 图像滤波(如高通/低通滤波)

  • 去噪处理

频域分析是信号处理的基础工具之一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值