1. PCA 主成分分析
主成分分析(PCA)是一种常用的数据降维方法。
它通过找到数据中方差最大的方向(主成分),将原始高维数据映射到较低维空间,同时尽可能保留原始信息。
数学实现上,通常通过协方差矩阵的特征值分解或**奇异值分解(SVD)**来完成。主成分对应特征值最大的特征向量。
2. 奇异值分解(SVD)
奇异值分解(Singular Value Decomposition, SVD)将任意矩阵 AAA 分解为:
用途包括:PCA、图像压缩、低秩逼近、矩阵去噪等。
奇异值大小反映了数据的“能量”分布。
3. 上采样与下采样
上采样(Upsampling):将数据尺寸放大,如将 32×32 图像放大成 64×64。常见方法有:
-
最近邻插值
-
双线性插值
-
转置卷积(反卷积)
下采样(Downsampling):将数据尺寸缩小,如 64×64 → 32×32,常见方法有:
-
最大池化(Max Pooling)
-
步长卷积(Stride > 1)
-
平均池化(Average Pooling)
上采样用于恢复空间信息;下采样用于压缩特征、加快计算。
4. 傅里叶变换(Fourier Transform)
傅里叶变换用于将时域信号转换为频域表示,揭示信号中的频率成分。
-
连续傅里叶变换:适用于连续信号
-
离散傅里叶变换(DFT):数字信号分析工具
-
快速傅里叶变换(FFT):高效实现 DFT 的算法
在图像处理中,用于:
-
边缘检测
-
图像滤波(如高通/低通滤波)
-
去噪处理
频域分析是信号处理的基础工具之一。