NBA球员出手位置分布图

本文记录了一位转行数据分析的小白通过Python分析NBA球员出手位置的过程。作者从CSV文件中获取数据,利用matplotlib绘制散点图,并结合Arc、Rectangle、Circle绘制球场,展示了如何进行数据可视化。虽然在数据获取上遇到困难,但通过实践对数据分析的流程有了初步理解,认识到数据获取的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小白一只,想转行互联网行业的数据分析,通过寒假的佛系学习对python有了一定的了解。记录一下第一个小玩意儿。

在刷crossin论坛的时候突然看到一篇关于NBA的数据分析,因为本身自己也非常喜欢打球,顿时就有了兴趣。

由于对python的url不是特别了解,找了一堆资料也没能把数据从网上爬下来(差点劝退),后面又通过找资料有现成的csv,终于让我跨出了第一步。

先将下载过来的CSV数据文件打开

import matplotlib.pyplot as plt
import pandas as pd
from matplotlib.patches import Circle, Rectangle, Arc
from matplotlib.offsetbox import  OffsetImage
data1 = pd.read_csv('shots-2019Aaron.csv',encoding='utf-8') 
data1 

然后在通过matplotlib 将其中的文件设置成散点图,通过确定四个要素来绘制。

made = data1[data1['outcome']==1]
missed = data1[data1['outcome']==0]
plt.scatter(missed.y, missed.x,color='r', marker='.', alpha=0.3)
plt.scatter(made.y, made.x,color='b', marker='.', alpha=0.3)
#删除边框就用它
#plt.tick_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值