- 博客(15)
- 资源 (1)
- 收藏
- 关注
原创 猫狗识别(计算机视觉)
猫狗识别作为计算机视觉领域的一项重要应用,通过深度学习技术,特别是卷积神经网络(CNN)的广泛应用,实现了对图像中猫和狗的高效、准确分类。该技术利用大量标注好的猫狗图像数据集进行模型训练,使模型能够学习到猫和狗之间的细微差别,从而实现对新输入图像的快速识别。猫狗识别不仅在日常生活中为宠物爱好者提供了便利,如宠物管理、健康监测等,还在科学研究、动物保护等领域发挥着重要作用。随着算法的不断优化和计算能力的提升,猫狗识别的准确率不断提高,同时处理速度也越来越快,满足了实时性要求较高的应用场景。
2024-09-04 23:50:54
1275
1
原创 基于YOLO的目标检测(车辆、行人等)
基于YOLO(You Only Look Once)的目标检测技术是一种高效、实时的计算机视觉方法,它能够在单个前向传播中同时预测图像中多个目标的边界框、置信度以及类别概率,特别适用于车辆、行人等复杂场景下的快速检测。YOLO通过其独特的网络结构和算法设计,不仅保持了高检测精度,还显著提升了处理速度,使得在自动驾驶、智能监控、视频分析等领域具有广泛的应用前景。
2024-09-04 23:01:04
1560
原创 假设2000年至2020年的产量每间隔2年数据分别为90,105,123,131,150,179,203,226,249,256,267,试估计2015年的产量并绘图。(系统建模与仿真)
系统建模与仿真:假设2000年至2020年的产量每间隔2年数据分别为90,105,123,131,150,179,203,226,249,256,267,试估计2015年的产量并绘图。
2024-04-09 12:45:40
436
原创 时序数据可视化——散点图法
2、路径 C:\ProgramData\Anaconda3\Scripts。3、命令 pip install pyecharts。1、安装pyecharts。
2024-03-19 23:09:43
719
1
原创 使用Plotly绘制饼图、使用NetworkX绘制网络图
题目1:使用Plotly绘制饼图,数据如下,苹果:250,梨:120, 香蕉:80, 橙子:108,山竹:55, 枇杷:130。要求:图片大小为600*450;在jupyter notebook中显示图形;题目2、绘制以下节点和联系的网络图,节点颜色为蓝色。
2024-03-17 23:10:51
939
1
原创 Python数据可视化基础
掌握7种Python数据可视化库的基本绘图方法,能够根据项目要求,选择合适的图形、设置参数和绘制图形。1、文件“employee.csv”中包含3个产业就业人员数据,请分析各产业就业人员数据特征间的关系以及各产业就业人员数据特征的分布与分散状况。(1)使用Matplotlib绘制2000-2019年各产业就业人员散点图。(2)使用Holoviews绘制2000-2019年各产业就业人员折线图。(3)使用Plotly绘制2019年各产业就业人员饼图。
2024-03-14 21:12:32
1543
原创 根据玻璃的特征对玻璃进行类别判定
使用支持向量机对玻璃类别进行分类 ,并输出测试集中前10项的预测结果和对应的真实结果# 使用支持向量机对玻璃类别进行分类# 输出测试集中前10项的预测结果和对应的真实结果print("预测结果前10项:")print("对应的真实结果前10项:")输出分类模型评价报告# 输出分类模型评价报告print("分类模型评价报告:")
2024-03-12 09:45:21
1857
1
原创 使用pyecharts绘制饼图
要求:设置初始配置项,画布宽和高分别为700px、500px。设置全局配置项:标题文字为“Pie-商品库存”,图例距离容器右侧‘10%’;标签配置项格式为“商品名=库存数”,例如“衬衫=150”。goods = ['衬衫', '毛衣', '领带', '裤子', '风衣', '高跟鞋', '袜子']
2024-03-11 13:01:19
817
原创 使用seaborn绘制鸢尾花的花萼长度、花萼宽度与种类之间的分类散点图。
要求:导入相关绘图库和数据处理库;读取data文件夹中iris.csv的数据;设置元素缩放类型为‘notebook’;设置调色板为“紫蓝绿”,即“PuBuGn”;绘制分类散点图,去除右边和顶部边框,输出展示。使用seaborn绘制鸢尾花的花萼长度、花萼宽度与种类之间的分类散点图。
2024-03-10 17:22:42
740
1
原创 pandas(order和other)
(1)导入pandas库,读取data文件夹中的order.csv文件,编码格式为“gbk”,打印出所有列属性名称和形状,输出前5行数据,输出“设备编号”为“112077”的'订单编号', '总金额(元)'和 '购买用户'。(4)读取other.csv中的数据,将order表和other表的数据按照“订单编号”和“编号”主键进行合并,采用外连接,新的表为order,并输出新表的属性列。(5)获取other.csv中“支付状态”的所有取值情况(去重),并进行哑变量处理,打印处理后结果。
2024-03-10 17:14:30
650
1
计算机视觉-猫狗识别源代码
2024-09-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅