自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 资源 (1)
  • 收藏
  • 关注

原创 猫狗识别(计算机视觉)

猫狗识别作为计算机视觉领域的一项重要应用,通过深度学习技术,特别是卷积神经网络(CNN)的广泛应用,实现了对图像中猫和狗的高效、准确分类。该技术利用大量标注好的猫狗图像数据集进行模型训练,使模型能够学习到猫和狗之间的细微差别,从而实现对新输入图像的快速识别。猫狗识别不仅在日常生活中为宠物爱好者提供了便利,如宠物管理、健康监测等,还在科学研究、动物保护等领域发挥着重要作用。随着算法的不断优化和计算能力的提升,猫狗识别的准确率不断提高,同时处理速度也越来越快,满足了实时性要求较高的应用场景。

2024-09-04 23:50:54 1275 1

原创 基于YOLO的目标检测(车辆、行人等)

基于YOLO(You Only Look Once)的目标检测技术是一种高效、实时的计算机视觉方法,它能够在单个前向传播中同时预测图像中多个目标的边界框、置信度以及类别概率,特别适用于车辆、行人等复杂场景下的快速检测。YOLO通过其独特的网络结构和算法设计,不仅保持了高检测精度,还显著提升了处理速度,使得在自动驾驶、智能监控、视频分析等领域具有广泛的应用前景。

2024-09-04 23:01:04 1560

原创 假设2000年至2020年的产量每间隔2年数据分别为90,105,123,131,150,179,203,226,249,256,267,试估计2015年的产量并绘图。(系统建模与仿真)

系统建模与仿真:假设2000年至2020年的产量每间隔2年数据分别为90,105,123,131,150,179,203,226,249,256,267,试估计2015年的产量并绘图。

2024-04-09 12:45:40 436

原创 时序数据的可视化(1)

使用stock.csv(股价表)的数据,利用Python绘制企业股票交易时间与成交金额的散点图。

2024-04-09 12:26:31 757

原创 时序数据可视化——散点图法

2、路径 C:\ProgramData\Anaconda3\Scripts。3、命令 pip install pyecharts。1、安装pyecharts。

2024-03-19 23:09:43 719 1

原创 使用Plotly绘制饼图、使用NetworkX绘制网络图

题目1:使用Plotly绘制饼图,数据如下,苹果:250,梨:120, 香蕉:80, 橙子:108,山竹:55, 枇杷:130。要求:图片大小为600*450;在jupyter notebook中显示图形;题目2、绘制以下节点和联系的网络图,节点颜色为蓝色。

2024-03-17 23:10:51 939 1

原创 Python数据可视化基础

掌握7种Python数据可视化库的基本绘图方法,能够根据项目要求,选择合适的图形、设置参数和绘制图形。1、文件“employee.csv”中包含3个产业就业人员数据,请分析各产业就业人员数据特征间的关系以及各产业就业人员数据特征的分布与分散状况。(1)使用Matplotlib绘制2000-2019年各产业就业人员散点图。(2)使用Holoviews绘制2000-2019年各产业就业人员折线图。(3)使用Plotly绘制2019年各产业就业人员饼图。

2024-03-14 21:12:32 1543

原创 根据玻璃的特征对玻璃进行类别判定

使用支持向量机对玻璃类别进行分类 ,并输出测试集中前10项的预测结果和对应的真实结果# 使用支持向量机对玻璃类别进行分类# 输出测试集中前10项的预测结果和对应的真实结果print("预测结果前10项:")print("对应的真实结果前10项:")输出分类模型评价报告# 输出分类模型评价报告print("分类模型评价报告:")

2024-03-12 09:45:21 1857 1

原创 使用pyecharts绘制饼图

要求:设置初始配置项,画布宽和高分别为700px、500px。设置全局配置项:标题文字为“Pie-商品库存”,图例距离容器右侧‘10%’;标签配置项格式为“商品名=库存数”,例如“衬衫=150”。goods = ['衬衫', '毛衣', '领带', '裤子', '风衣', '高跟鞋', '袜子']

2024-03-11 13:01:19 817

原创 使用seaborn绘制鸢尾花的花萼长度、花萼宽度与种类之间的分类散点图。

要求:导入相关绘图库和数据处理库;读取data文件夹中iris.csv的数据;设置元素缩放类型为‘notebook’;设置调色板为“紫蓝绿”,即“PuBuGn”;绘制分类散点图,去除右边和顶部边框,输出展示。使用seaborn绘制鸢尾花的花萼长度、花萼宽度与种类之间的分类散点图。

2024-03-10 17:22:42 740 1

原创 pandas(order和other)

(1)导入pandas库,读取data文件夹中的order.csv文件,编码格式为“gbk”,打印出所有列属性名称和形状,输出前5行数据,输出“设备编号”为“112077”的'订单编号', '总金额(元)'和 '购买用户'。(4)读取other.csv中的数据,将order表和other表的数据按照“订单编号”和“编号”主键进行合并,采用外连接,新的表为order,并输出新表的属性列。(5)获取other.csv中“支付状态”的所有取值情况(去重),并进行哑变量处理,打印处理后结果。

2024-03-10 17:14:30 650 1

原创 创建一个8*8的数组,且四周边界都是1,里边全是0。

创建一个8*8的数组,且四周边界都是1,里边全是0。

2024-02-29 18:54:15 560

原创 创建一个5*10的随机数组,并且打印出最大值、最小值、平均值。

创建一个5*10的随机数组,并且打印出最大值、最小值、平均值。

2024-02-29 18:47:21 541

原创 创建一个5*3随机矩阵和一个3*2随机矩阵,求矩阵积。

创建一个5*3随机矩阵和一个3*2随机矩阵,求矩阵积。

2024-02-29 18:42:32 758

原创 (附源码以及相关文件)基于Python的音乐推荐系统

导入库,定义了一个变量data_home,赋值为'./'

2024-01-16 16:04:36 1803 2

计算机视觉-猫狗识别源代码

猫狗识别是计算机视觉领域中的一个重要问题,随着人工智能技术的发展,特别是深度学习技术的应用,猫狗识别取得了显著进展。猫狗识别主要基于深度学习技术,特别是卷积神经网络(CNN)的应用。CNN能够自动从图像中提取层次化的特征表示,并通过这些特征进行分类识别。具体来说,CNN通过卷积层、池化层、全连接层等结构,对输入图像进行逐层处理,最终输出分类结果。 数据准备:收集包含猫和狗图像的数据集,如CIFAR-10、Kaggle上的猫狗图像数据集等。对数据集进行预处理,包括图像大小调整、归一化等。 模型构建:选择合适的深度学习框架(如TensorFlow、PyTorch等)。构建CNN模型,设置卷积层、池化层、全连接层等网络结构。 模型训练:使用准备好的数据集对模型进行训练,通过反向传播算法优化模型参数。在训练过程中,可以使用数据增强技术(如旋转、翻转、缩放等)来增加数据多样性,提高模型泛化能力。 模型评估:使用测试集对训练好的模型进行评估,检查模型的准确率和性能。绘制训练和验证准确率/损失的曲线,以了解模型是否出现过拟合或欠拟合。 模型优化:根据评估结果对模型进行调优,如调整学习率、批量大小等

2024-09-04

时序数据可视化-散点图法

时序数据可视化-散点图法

2024-03-19

Python数据可视化基础

Python数据可视化基础

2024-03-14

根据玻璃的特征对玻璃进行类别判定

根据玻璃的特征对玻璃进行类别判定

2024-03-12

order.csv(shuju)

order.csv(shuju)

2024-03-10

other.csv(shuju)

other.csv(shuju)

2024-03-10

python-机器学习-心脏病数据

python-机器学习-心脏病数据

2024-02-29

Recommenders

Recommenders

2024-01-16

recommendations-engines

recommendations_engines

2024-01-16

振荡器.ms14

振荡器.ms14

2022-12-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除