时序数据可视化——散点图法

本文介绍了如何使用Python的pyecharts库创建散点图来展示股票价格数据。步骤包括安装库、数据预处理、绘制散点图并保存为HTML文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序数据可视化——散点图法:

1、安装pyecharts
2、路径 C:\ProgramData\Anaconda3\Scripts
3、命令 pip install pyecharts

例子:

# 散点图
#导入相关库
from pyecharts import options as opts
from pyecharts.charts import Scatter, Page
from pyecharts.globals import SymbolType

import pandas as pd
# 读取文件-stocks.csv,编码格式-gbk
df = pd.read_csv('stocks.csv', encoding='gbk')

# sql_num = "SELECT trade_date,open,close FROM stocks where trade_date>='2020-01-01'order by trade_date asc"
# 将trade_date转换为datetime类型
df_filtered['trade_date'] = pd.to_datetime(df_filtered['trade_date'])  

# 获取满足where条件的属性:trade_date>='2020-01-01'
df_filtered = df[df['trade_date'] >= '2020-01-01'] 

# 排序:order by trade_date asc        df.sort_values(by="sales" , ascending=False) 
df_filtered = df_filtered.sort_values(by='trade_date', ascending=True)  

# 获取绘图数据
x_data = df_filtered['open'].tolist()  
y_data = df_filtered['close'].tolist()  
# 绘制散点图  
scatter = Scatter()  
scatter.add_xaxis(x_data)  
scatter.add_yaxis(  
    series_name="Stock Prices",  
    y_axis=y_data,  
    symbol_size=10,  
    # symbol=SymbolType.ROUND_RECT  # 如果需要显式指定符号类型,可以使用 ROUND_RECT  
)  
scatter.set_global_opts(title_opts=opts.TitleOpts(title="Stock Open vs Close Prices Scatter Plot"))  
  
# 渲染散点图到HTML文件  
scatter.render('scatter_plot.html')  

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅小溪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值