1285:最大上升子序列和

【题目描述】
一个数的序列bi

,当b1<b2<...<bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,...,aN),我们可以得到一些上升的子序列(ai1,ai2,...,aiK),这里1≤i1<i2<...<iK≤N

。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中和最大为18,为子序列(1,3,5,9)的和。

你的任务,就是对于给定的序列,求出最大上升子序列和。注意,最长的上升子序列的和不一定是最大的,比如序列(100,1,2,3)的最大上升子序列和为100,而最长上升子序列为(1,2,3)。

【输入】
输入的第一行是序列的长度N(1≤N≤1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。

【输出】
最大上升子序列和。

【输入样例】
7
1 7 3 5 9 4 8
【输出样例】
18
wrong了2次,为什么单调递增序列不包括相等的情况啊(好吧,我见识短)


#include <bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
const int idata=5000+5;
const int idata2=100+5;
int n,m;
ll flag;
ll minn=INT_MAX,maxx=-1;
//int cnt[idata];
//int len[idata];
int dp[idata];
int judge;
ll sum[idata];
int length;
//int x[idata],y[idata];
 
int main()
{
    int i,j;
    cin>>n;
    for(i=1;i<=n;i++)
        cin>>dp[i];
 
    sum[1]=dp[1];
    for(i=2;i<=n;i++)
    {
        sum[i]=dp[i];
        for(j=1;j<=i-1;j++)
        {
            if(dp[j]<dp[i]&&
               sum[i]<sum[j]+dp[i])
                sum[i]=sum[j]+dp[i];
        }
    }
 
    for(i=1;i<=n;i++)
        if(maxx<sum[i])
            maxx=sum[i];
 
    cout<<maxx<<endl;
 
 
    return 0;
}

 
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值