最大上升子序列之和

本文通过一道题目详细讲解了如何利用动态规划求解最大上升子序列之和的问题,阐述了动态规划的核心——拆解子问题和状态转移方程,并给出了具体的AC代码实现。
摘要由CSDN通过智能技术生成

题目

题目中已告诉最长上升子序列之和!=最大上升子序列之和

动态规划的比较重要的点

1. 拆分成子问题
2. 状态转移方程

(其实动态规划也可以理解为递归的逆过程)

根据这道题来实操一下

  1. 拆分成子问题

    求的是n个数的最大上升子序列之和
    则可以拆分成求n-1个数的最大上升子序列之和
    以此类推 最后是先求1个数的最大上升子序列之和
    //这里是做题自己想
    (这里有没有一点递归的味道,1为返回条件)
    从求当一个数时到求当两个数时的最大上升子序列之和
    以此类推,最后由求当n-1时到当n时的最大上升子序列之和
    //这里是程序进行求解
    (有没有递归返回去的味道)

  2. 状态转移方程

    状态转移方程,是连接两个状态的桥梁

    可能这样说比较抽象,结合这道题来理解一下
    求当一个数时到求当两个数时的最大上升子序列之和,再到三个数时
    简单模拟一下
    这里有两个数组

    int ans[1000+10]={
         0,1,50,20,72};//存储和
    int m[1000
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值