本教程分享了 智能化测试平台搭建过程。借助DeepSeek生成测试用例,Playwright执行自动化测试,Celery调度测试任务 等实现从需求到用例,再到测试结果的数据闭环。
一、为什么传统测试框架不再够用?
1.1 现代应用测试的三大痛点
痛点类型 | 典型案例场景 | 传统方案缺陷 | 智能解决方案 |
效率瓶颈 | 新需求测试用例设计耗时 | 人工编写用例耗时占 | AI自动生成用例( |
维护黑洞 | 5000+ 用例年维护成本超 | 用例与业务迭代不同步 | 智能用例自愈(减少 |
覆盖盲区 | 30% 线上故障因测试遗漏引发 | 静态用例难以应对动态场景 | 风险预测模型(提升 |
下面举例说明智能化测试平台的优势:
1.2 京东搜索功能案例对比
# 传统测试流程(耗时2小时)
def test_jd_search():
手动打开浏览器()
输入搜索关键词("手机")
点击搜索按钮()
验证结果页()
生成报告()
# 智能测试流程(20分钟)
def smart_test():
cases = deepseek.parse("测试手机搜索功能") # 生成3个场景
celery.dispatch(cases) # 分发任务
playwright.execute(cases) # 自动执行
storage.save_results() # 存储结果
二、智能测试平台核心架构设计
功能模块及联动参考图
参考以上功能模块图,标明了智能化测试平台实现的功能。
三、技术选型清单
根据以上架构设计,实现上有不同的技术栈和选择。比如以下是一个极简化实现组合,分别从 用例生成、自动化执行、用例调度、结果存储 不同层级实现对应功能。
极简组合说明
技术栈 | 核心优势 | 适用场景 | 部署命令 |
DeepSeek | 中文 | 需求解析/用例生成 | pip install deepseek-sdk |
Playwright | 跨浏览器/自动等待/移动端支持 | 执行 | playwright install |
Celery | 分布式调度/优先级队列 | 任务管理 | pip install celery |
SQLite | 零配置/单文件存储 | 结构化数据存储 | Python 内置 |
四、手把手搭建基础框架实战
4.1 环境准备(10分钟)
# 创建项目并安装依赖
mkdir smart-test && cd smart-test
python -m venv .venv
source .venv/bin/activate
pip install playwright deepseek-sdk celery python-dotenv
# 配置环境变量
echo "DEEPSEEK_API_KEY=your_api_key_here" > .env
echo "REDIS_URL=redis://localhost:6379/0" >> .env
# 初始化浏览器
playwright install chromium
4.2 核心模块实现
4.2.1 智能需求解析
# ai_engine/parser.py
import os, json
from deepseek import DeepSeek
from dotenv import load_dotenv
load_dotenv()
class RequirementParser:
def __init__(self):
self.ds = DeepSeek(api_key=os.getenv("DEEPSEEK_API_KEY"))
def parse(self, text):
prompt = f"""将以下需求转换为测试场景JSON:
需求:{text}
要求:
- 生成3个正常场景和2个异常场景
- 每个场景包含name、steps、type字段
- 步骤用列表表示"""
response = self.ds.chat(messages=[{"role": "user", "content": prompt}])
return json.loads(response.choices[0].message.content)
# 示例:解析头条滚动加载需求
parser = RequirementParser()
print(parser.parse("验证资讯流无限滚动加载功能"))
4.2.2 任务调度中心
# tasks.py
from celery import Celery
from ai_engine.parser import RequirementParser
from playwright.sync_api import sync_playwright
import os
app = Celery('tasks', broker=os.getenv("REDIS_URL"))
@app.task
def execute_case(case):
with sync_playwright() as p:
browser = p.chromium.launch()
page = browser.new_page()
try:
# 京东搜索案例实现
if "搜索" in case["name"]:
page.goto("https://www.jd.com")
page.fill("#search-input", case["keyword"])
page.click("#search-btn")
page.wait_for_selector(".goods-list")
# 头条滚动加载案例
elif "滚动加载" in case["name"]:
page.goto("https://www.toutiao.com")
for _ in range(3):
page.mouse.wheel(0, 1500)
page.wait_for_timeout(2000)
return {"status": "pass"}
except Exception as e:
return {"status": "fail", "error": str(e)}
finally:
browser.close()
4.2.3 数据存储模块
# storage.py
import sqlite3
from pathlib import Path
class ResultManager:
def __init__(self):
self.db = sqlite3.connect("results.db")
self._init_db()
self.report_dir = Path("reports")
self.report_dir.mkdir(exist_ok=True)
def _init_db(self):
self.db.execute("""CREATE TABLE IF NOT EXISTS test_results(
id INTEGER PRIMARY KEY,
case_name TEXT,
status TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)""")
def save(self, result):
self.db.execute("INSERT INTO test_results (case_name, status) VALUES (?,?)",
(result["name"], result["status"]))
self.db.commit()
# 示例:保存京东搜索结果
manager = ResultManager()
manager.save({"name": "京东手机搜索", "status": "pass"})
4.3 全流程验证(30分钟)
# 启动Redis服务
docker run -d -p 6379:6379 redis:alpine
# 启动Celery Worker
celery -A tasks worker --loglevel=info
# 提交测试任务(新终端)
python -c '''
from tasks import execute_case
cases = [
{"name": "京东手机搜索", "keyword": "iPhone15"},
{"name": "头条滚动加载", "scroll_times": 3}
]
for case in cases:
execute_case.delay(case)
'''
# 验证结果
sqlite3 results.db "SELECT * FROM test_results"
# 预期输出:
# 1|京东手机搜索|pass|2024-04-01 10:00:00
# 2|头条滚动加载|pass|2024-04-01 10:05:00
五、结语
本文简要分享了智能化测试平台从零搭建步骤,包括核心架构设计,核心模块实现,包括智能需求解析、任务调度、数据存储 等全流程闭环管理的初步框架。
抛砖引玉,希望以上思路和分享对你有所启发和帮助。如果觉得用,还请 点个赞,关个注,下次更新不迷路!
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓