VDocRAG:开源多模态RAG创新方案,实现OCR-Free视觉文档检索与增强生成!

前期几个工作提到,基于OCR的文档解析+RAG的方式进行知识库问答,受限文档结构复杂多样,各个环节的解析泛化能力较差,无法完美的对文档进行解析。因此出现了一些基于多模态大模型的RAG方案。如下:

下面再来看一个新的RAG框架VDocRAG,用于解决视觉文档问答问题。

视觉文档问答概述

图片

OpenDocVQA任务的目标是给定一个文档图像集合和一个问题,通过找到相关的文档图像来输出答案。任务分为两个阶段:

  1. 视觉文档检索(Visual Document Retrieval)

    • 输入:一个查询问题  和一个文档图像集合 。

    • 输出:从集合中检索出与问题相关的  个文档图像 ,其中 (即  远小于文档集合的大小)。

    • 目标:通过检索相关的文档图像来帮助生成答案。

  2. 文档视觉问答(DocumentVQA)

    • 输入:查询问题  和检索到的文档图像 。

    • 输出:生成一个答案 。

    • 目标:利用检索到的文档图像来生成准确的答案。

方法架构

VDocRAG由两个主要组件组成:VDocRetriever和VDocGenerator,下面来看看这两个组件。

图片

VDocRetriever(检索器)

VDocRetriever基于LVLM的双编码器架构,用于检索与查询问题相关的文档图像。

  1. 动态高分辨率图像编码:使用动态裁剪将高分辨率图像分割成较小的patch,每个patch大小为  像素。将这些patch作为单独的输入传递给图像编码器,并将其转换为视觉文档特征 。

  2. 编码过程:在VDocRetriever中,问题和视觉文档特征被独立编码。在问题的末尾添加一个 (End of Sequence)标记,并将其与视觉文档特征一起输入到LVLM中。通过取最后一个  向量来获得问题和视觉文档的嵌入  和 。

  3. 相似度计算:使用最大内积搜索计算问题和视觉文档嵌入之间的相似度分数:

  4. 检索过程:根据相似度分数检索与问题最相关的  个文档。

VDocGenerator(生成器)

VDocGenerator使用VDocRetriever检索到的文档图像来生成答案。

  1. 编码过程:编码检索结果后,将问题和编码后的结果连接起来,并将其输入到LVLM中。

  2. 生成过程:LVLM根据输入生成答案。

自监督预训练

预训练的目标是迁移 LVLM 强大的理解和生成能力,以促进其在视觉文档检索中的应用。为此,提出了两个新的自监督预训练任务,将整个图像表示压缩为输入图像末尾的 EOS 令牌。我们的预训练过程传递文档图像,并将其提取的 OCR 文本用作伪目标。完整的预训练目标定义为损失之和,如下所示。

通过检索进行表示压缩 (RCR)

图片

使用对比学习任务通过检索与OCR文本相关的图像来压缩图像表示。构建正样本OCR文本-图像对,并使用InfoNCE损失函数计算对比损失:

其中  是一个温度超参数, 表示批量大小。

通过生成进行表示压缩 (RCG)

图片

使用自定义的注意力掩码矩阵来利用LVLM的生成能力。对图像标记的表示进行掩码,仅允许  标记和前面的OCR标记的注意力。通过标准自回归过程获取图像标记的表示,并将它们压缩到  标记中。定义损失函数:

图片

其中  表示OCR的第  个标记。

实验表现

检索结果

VDocRetriever 在未见数据集 ChartQA 和 SlideVQA 上表现出卓越的零样本泛化能力,优于现成的文本检索器和最先进的视觉文档检索模型。

图片

RAG 结果

即使所有模型都采用相同的初始化,VDocRAG 在 DocumentVQA 任务上的表现也明显优于闭卷 LLM 和基于文本的 RAG。

图片

图片

VDocRAG 在理解布局和可视化内容(例如表格、图表、图形和示意图)方面展现出显著的性能优势。这些发现凸显了将文档表示为图像对于提升 RAG 框架性能的关键作用。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值