OpenAI CEO Sam Altman 在个人博客上发表了一篇题为《The Intelligence Age》的文章,在这篇文章中 Altman 做了一些预测,他说超级 AI 可能会在未来几千天内诞生,每个人都会拥有 AI 私人助手等。同时,他也强调要注意 AI 的负面影响,要尽量减少 AI 带来的危害。
下面为博客译文,我们一起学习一下。
在接下来的几十年里,我们将能够做到一些在我们爷爷奶奶那辈人看起来像魔术一样的事情。
这种现象并不新鲜,但它将以一种前所未有的速度加速发展。人类的能力随着时间显著提升;我们现在已经能够做到一些我们前辈认为不可能的事情。
我们的能力提升并不是基因改变的结果,而是因为我们受益于社会基础设施的高度智能化和所具有的强大能力,这种基础设施整体上比我们任何个体都要强得多。从某种重要意义上讲,社会本身就是一种高级智能。
我们的爷爷奶奶那辈人 —— 以及他们之前的几辈人 —— 已经取得了伟大的成就,他们为我们搭建了人类进步的基础,我们现在正受益于此。AI 将为人类提供解决难题的工具,帮助我们在这一框架中增添我们无法单独构建的支柱。进步的故事将继续延续下去,我们的孩子将能够做到我们无法做到的事情。
这一切不会一蹴而就,但很快我们将能够与 AI 协作工作,完成我们自己无法完成的工作;最终,**我们每个人都可能拥有一个由虚拟专家组成的个人 AI 团队,共同协作,创造出我们所有可以想象到的东西。**我们的孩子将拥有虚拟导师,能够在任何学科、任何语言以及任何学习节奏下提供个性化指导。我们可以设想在医疗保健、软件开发等领域的巨大改进。
凭借这些新技能,我们可能会迎来一种我们现在无法想象的共同富裕。当然,有钱不一定就能让人快乐 —— 毕竟有很多有钱人其实并不开心 —— 但它确实能让全世界人们的生活变得更好。
从狭义的角度看人类历史:经过几千年的科学探索和技术革新,我们学会了怎么把沙子融化,加点其他材料,然后在非常小的尺度上精确地排列,制造出电脑芯片。然后,我们通过这些芯片传输能量,最终创造出越来越强大的人工智能系统。
这可能是人类历史上具有里程碑意义的一刻了。我想,在接下来的几千天里,我们可能会创造出超智能 —— 虽然可能需要更长的时间,但我坚信我们一定能走到那一步。
我们是怎么一步步走到这个繁荣的新阶段的呢?
简单来说:深度学习奏效了。
详细点说:随着规模的扩大,深度学习的效果越来越好,我们也在不断加大投入。
就是这样,人类找到了一种算法,它能真正、全面地学习任何数据分布,或者说,能理解产生任何数据分布的 “规则”。最让人震惊的是,计算能力和数据量越大,它解决问题的能力就越强。无论我思考多长时间,都无法完全理解这背后深远的影响。
我们确实还有很多细节要解决,但要是被某个具体问题搞分心了,那就大错特错了。深度学习已经证明是有效的,剩下的问题我们也会一一解决。虽然我们可以对未来做出很多预测,但有一点是肯定的:随着规模的扩大,AI 会变得越来越好,这将给全世界人民的生活带来实实在在的改善。
不久的将来,AI 模型可能会成为我们的私人助理,帮我们处理各种任务,比如协调医疗保健等。等到某一天,AI 系统可能会变得超级厉害,甚至能帮助我们开发下一代的系统,推动所有科学领域的发展。
技术的进步让我们从石器时代走到了农业时代,再到工业时代。现在,我们正走在通往智能时代的道路上,这条路是由计算能力、能源和人类的意志铺成的。
如果我们想让更多人能使用 AI,就得降低计算成本,让它变得更普及(这需要大量的能源和芯片)。如果基础设施不够完善,AI 可能会变成一种稀缺资源,甚至引发冲突,成为富人专享的工具。
我们需要谨慎但坚定地采取行动。智能时代的到来是一个极其复杂且充满风险的重大变化。这不会是一个完全正面的故事,但它的巨大潜力让我们有责任去探索如何应对这些风险。
我相信未来会如此光明,甚至无法通过人类文字准确描述它;智能时代的一个显著特点将是大规模的繁荣。
虽然这些宏伟的目标需要时间来实现,但想象一下,那些曾经令人惊叹的成就 —— 比如解决气候变化、在太空建立家园、解开物理学的谜团 —— 最终会变得稀松平常。有了几乎无限的智慧和充足的能源,我们就有了创造伟大想法的灵感,也有了将它们变成现实的行动力。
就像我们之前在其他技术领域看到的,AI 也会有它的负面影响。所以**我们现在就得开始努力,既要让 AI 的好处最大化,也要尽可能减少它的危害。**比如说,我们知道在未来几年里,AI 会对我们的工作方式产生重大影响,有好有坏。但大多数工作的变化会比我们想象的要慢得多,我并不担心将来会无事可做 —— 即使那些工作在今天看来不像是 “真正的工作”。
人类天生就有创造和帮助他人的愿望,AI 将帮助我们以前所未有的方式放大这些能力。作为一个社会,我们将重新进入一个不断扩张的世界,并再次专注于共同的利益。
你想一下,我们今天做的很多工作,在几百年前的人看来可能都是在浪费时间。但没有人会希望回到过去,只做一个点灯人。如果一个点灯人能看到今天的世界,他肯定会觉得我们周围的繁荣是难以想象的。同样,如果我们能快进到一百年后,那时的繁荣也会让我们感到难以置信。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓