都说世界就是一个巨大的草台班子,而今天在逛 Github 时发现一个 Star 数高达 40.9k 的项目——MetaGPT。
介绍
- 它是一个多智能体框架
- 内部包括了一个完整的软件团队所需的所有角色:产品经理 / 架构师 / 项目经理 / 工程师等
- 可以利用 AI 以软件公司的形式进行工作,只需要输入一句话,就可以自动输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等。
以下是官方给出的软件公司多角色示意图:
简单点来说,MetaGPT 可以拓展我们输入的指令并分身成不同的角色来完成需求:
- 老板:给了一个内容很简短的需求(啪!一拍脑袋,需求来了)
- 产品经理:开始需求分析,撰写和修改需求文档
- 接下来架构师开始撰写和修改设计、审核产品需求文档以及后续进行 Code Review
- 项目经理:要给团队开发编写和分配任务,也需要一起审核产品需求文档、审核设计及 Code Review
- 开发工程师:真实牛马开始编写代码、自查代码及对代码进行调试
- QA 质量,我们可以理解为测试,主要负责编写和执行测试用例
- 最终齐心协力完成整个需求🎉
那 MateGPT 如何使用呢?我们一起来看看~
安装
官方提供了三种安装方式:
- docker 安装
- python 安装
- git clone 本地运行
平时我都是喜欢使用 docker 进行安装的,但这次我选择使用 python。
需要注意的是安装 MetaGPT,python 的版本必须在 3.9 以上,如果不知道自己电脑上的 python 版本是多少,我们可以使用 python3 --version
来查看。
只要版本合适,我们就可以开始安装 MetaGPT 了:
python3 -m pip install metagpt
我们还可以选择安装一些额外的功能,比如:
- Mermaid:一种使用文本生成流程图、饼图、甘特图和其他图表的语言。可以使用 npm 进行安装:
npm install -g @mermaid-js/mermaid-cli
- pyppeteer:使用pyppeteer + mermaidjs可以将Mermaid文本转换为图表。
- ……
配置
光安装好还没用,我们在使用时还需要配置对应的大模型,不然没有 AI 支持它也跑不起来。
- 在当前工作目录中创建一个名为
config
的文件夹,并在其中添加一个名为config2.yaml
的新文件。 - config2.yaml 中的基础配置是这样的:
llm:
api_type: 'openai'
api_key: 'sk-...'
model: 'gpt-4-turbo'
其中:
- api_type 就是你现在要选择使用哪个厂商的 AI 大模型
- api_key 就是你的这个 AI 大模型的 API Key
- model 就是你要使用的模型名称,比如 gpt-4-turbo
- base_url 就是在 MetaGPT 在运行过程中要访问的 API 地址
运行
配置好之后,我们就可以开始使用了,打开终端进入到当前工作目录,然后输入我们将要让 MetaGPT 完成的第一个需求!
metagpt "写一个红心"
开始运行起来了:
可以看到有 Alice 这个产品、还有 Bob 架构师以及 Eve 项目经理在一起工作,也有进行一些 Code Review 和重写:
经过短暂的时间之后,项目已经开发完成了:
运行一下子瞅瞅看:python3 mian.py
完成!但是吧,这个效果不是我预期的,本来是想画个红心来着,哈哈哈哈~
不过起码算是完成了一整套流程。小伙伴们有兴趣的,可以去 Github 上下载玩玩儿看😊
遇到的坑
- 因为三金对 python 不熟,升级 python 版本到 3.12 之后运行项目时遇到一个 distutils 的问题,经过长时间的排查,发现是因为版本升的过于高了,3.12 的版本里没有这个 distutils,最后将版本降到 3.11 之后就好了
- 使用之前玩儿过的代理进行运行时,一直报错 JSONDecodeError,这个看了下 issue,有大佬说使用付费的 API Key 就 OK。三金换到之前的 gpt-3.5-turbo 模型就好了,不过因为模型不如 gpt-4 等模型,所以一些复杂的需求完成起来够呛。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓