美国AI医疗战略规划解读

今年初,HHS(美国卫生部)发布了一份近200页的「AI医疗战略规划」,详细阐述了美国官方准备如何大力推动AI在医疗行业的应用落地,值得所有关注AI医疗的从业者详读。

以下是对该战略规划核心内容的个人解读:

(下文中所用图片,英文版本是从HHS战略规划中截取,中文版本为笔者翻译)

一、总体框架

在HHS的战略规划中,AI医疗不是某种抽离出来独立存在的业务,而是要渗透到医疗行业的全生态,也就是下图中的五个Primary Domains(基础域)和两个Additional Domains(附加域)。

这其实就给AI医疗定下了一个很宏大的基调:用新技术重塑医疗行业生态。

印象中,上一个定位同等重要的概念还是十年前的「数字医疗」。正如我们所知道的,「数字医疗」在带动行业数字化转型升级的同时,催生了一个无比庞大且具有生命力的市场,也成就了许多伟大的企业。

由此不难看出,HHS对于AI医疗寄予厚望。当然,除了笃信AI技术可能创造真实的价值之外,市场和投资者对于AI的狂热,应该也是促使HHS第一时间押注AI医疗的重要原因。

尽管受到资本刺激的HHS,表现出了力挺AI的决心,但事实上,对于AI医疗潜在的风险,HHS并不敢予以无视。因此HHS搭建了一个「FAVES」框架,作为约束使用和风险评估的指导方针。

二、行动计划

在总体框架中,HHS设置了四个关键目标:

  • 促进医学人工智能的创新与应用

  • 促进值得信赖的人工智能的开发,以及负责任的应用

  • 使人工智能技术和资源民主化(即平权)

  • 培养人工智能赋能的劳动力和组织文化

按照战略规划,在每一个基础域都要实现上述四个关键目标。而将这些关键目标拆解成若干具体的任务,再把各项任务不断拆解和细化并明确权责分工,其实就构成了HHS推动AI医疗落地的一揽子行动计划。

在制定目标后,HHS对于相关机构和组织也做了一定安排,粗略划分了它们在不同基础域的参与程度。

而在具体每个基础域中,则会根据上述四个关键目标,拆解出二级子目标,再综合考量不同基础域的Stakeholder Engagement Map(利益相关者关系),安排各机构和组织的职责和工作。

具体内容过于冗长,不在此赘述。值得说明的是,HHS安排给各组织和机构的职责和工作,细看下来其实非常接地气,一点不「虚」。

粗略总结一下,美国官方主要就是采用以下五种简单粗暴的方式,激励从业者积极主动、合理合法地研发、部署和使用AI技术:1)给经费;2)给展示机会;3)给身份认证;4)给成果转化;5)给指导文件。

再通俗些讲,就是官方各部门务必有钱的出钱,有力的出力,实在不行也要帮着吆喝两声,几乎算是为AI医疗大开绿灯。

三、医疗服务域详细解读

在五个基础域中,医疗服务是相对重要的业务板块,也是目前国内针对AI医疗出现争议最多的领域,不妨对医疗服务域单独进行解读。

从HHS收集到的反馈来看,部分美国的医疗服务提供者,包括医院、诊所、医生等,对于AI技术在临床方面的应用非常谨慎,而非想象中的快速拥抱新技术。

他们的担忧主要源自对AI技术的不信任感,如战略规划中所描述的:

「在不清楚某项AI技术是否经过了相关机构的审查,或者不确定这些机构是否充分考虑了各种因素(比如患者的诊疗结果、隐私、安全等)之前,美国的医疗服务方对于AI新技术的应用往往保持沉默态度。如果不能够明确这些AI工具的可靠性,他们会非常不情愿使用新的AI技术。」

这也解释了另外一个问题,即为何HHS一方面在不断强调AI技术需要「值得信赖 trustworthy」和「负责任的应用 responsible use」,另一方面呼吁各方建立「信心 confidence」。显然,国内在试图推广AI医疗参与临床工作所遇到的困境,美国同行也未能幸免。

HHS对于医疗服务域AI的发展趋势作了如下总结:

  • 对AI医疗的投资巨大且不断增长

在所有医疗健康类风险投资项目中,AI医疗项目大约占据总投资金额的25%,自2021年以来总计超过190亿美元,其中2023年超过70亿美元。根据初步报告显示,这些巨额投资其中2/3用于AI的临床应用,另外1/3用于行政应用。

  • 对于AI医疗的热情与担忧并存

一份面向100位医疗行业负责人的调查显示,超过70%的负责人已经或准备实施部署AI医疗。然而在另一项调查中,大约40%的医生则表示,他们对于使用AI感到兴奋,但同时也表达了担忧:一方面,AI可能带来的医疗界就业格局的转变;另一方面,医患关系可能会出现一定程度的恶化,根据2022年的一项调查结果显示,大约60%的受访患者表示,如果医生依赖人工智能,他们会感到不舒服。

  • 不同科室的AI应用存在差异

目前AI技术已经被广泛应用在某些临床科室,特别是放射科(例如审查不同类型的医学图像,包括心电图、MRI等)。而在其他临床领域,比如病理学、心脏病学等,AI的应用也在持续增长。

  • 行政领域AI的创新和应用增加

在过去的几年中,由于与临床用例相比开发成本较低,以及GenAI和LLM技术的出现,人工智能在行政任务中的使用已经取得了进展。最近的应用包括从医生的笔记中提取药物名称、回复患者的行政问题、总结医疗对话,以及编写病史和体格检查等。根据美国医学会的调查,54%的医生对在他们的实践中使用人工智能(特别是用于行政任务,如处理各种文档和图表)感到兴奋。

  • 数据和IT系统的异质性

医疗服务机构在使用AI所需的技术和资源方面存在的差异,包括数据管理、临床和行政信息系统、核心基础设施(例如云计算)等,客观上影响了现阶段AI技术的应用落地。在不同医疗服务机构之间,由于数据格式和标准也可能存在不小差异,一定程度上阻碍了跨机构间的AI应用。这种异质性的存在,也深深影响着医疗服务机构决策者对于AI技术路线以及实施合作方的选择。

根据上述趋势分析,结合国内的实际情况,我们或许可以得出这样一个初步结论:无论是中国还是美国,现阶段的AI医疗如果要寻找切入点和突破口,减少医生行政领域工作量的场景,应该是更讨巧也更稳妥的选择。

如果从医疗机构,或者从产业的角度再进一步预判,AI技术在医疗服务领域的应用爆发,可能走的是后端向前端发力的路线,而不是反过来。如果借用数字医疗的概念,就是先在HRP领域突破,而不是EMR。能杀出重围的企业,对标的则是Oracle或者SAP。

四、医疗服务域的参考用例(Use Case)

HHS把医疗服务的价值链分成了三部分,包括医疗服务、医疗筹资和照护模式,并分别提供了参考用例,以及各用例下具体的示例:

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值