阿里巴巴通义千问:AI大模型Qwen2-VL实战体验与深度探索【大模型实战项目】

在人工智能领域,多模态模型的发展一直备受关注。阿里通义千问的 Qwen2-VL 的发布,为多模态技术的发展注入了新的活力。它不仅在图像和视频理解方面取得了显著的突破,还具备强大的视觉智能体能力,能够与各种设备进行交互,为用户带来全新的体验。

一、模型特点

1. 强大的视觉理解能力

  • **任意分辨率图像识别:**Qwen2-VL 可以读懂不同分辨率和不同长宽比的图片,无论图像的清晰度或大小如何,都能轻松识别。这得益于其独特的 naive dynamic resolution 支持,能够将任意分辨率的图像映射成动态数量的视觉 token,保证了模型输入和图像信息的一致性,模拟了人类视觉感知的自然方式。

  • **长视频理解:**该模型能够理解超过 20 分钟的长视频,这在多模态模型中是一项重大的突破。通过在线流媒体能力,它可以支持高质量的视频问答、对话和内容创作等应用,为视频领域的智能化发展提供了有力的支持。

2. 多语言支持

Qwen2-VL 除了支持英语和中文外,还能理解图像视频中的多种语言文本,包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等,真正做到了面向全球用户,打破了语言的障碍,为多语言环境下的应用提供了便利。

3. 视觉智能体能力

Qwen2-VL 具备强大的视觉智能体能力,可自主操作手机和机器人等设备。借助其复杂的推理和决策能力,能够根据视觉环境和文字指令进行自动操作,实现了人工智能与现实世界的更紧密结合,为智能家居、智能机器人等领域的发展带来了新的机遇。

二、模型架构

1. 模型结构

Qwen2-VL 延续了上一代 Qwen-VL 中 ViT 加 Qwen2 的串联结构,三个不同规模的模型都采用了 600M 规模大小的 ViT,支持图像和视频统一输入。这种结构使得模型能够更好地融合视觉和语言信息,提高对多模态数据的理解能力。

2. 多模态旋转位置编码(M-ROPE)

传统的旋转位置嵌入只能捕捉一维序列的位置信息,而 Qwen2-VL 采用的 M-ROPE 将旋转位置编码分解成时间、空间(高度和宽度)三部分,使大规模语言模型能够同时捕捉和整合一维文本、二维视觉和三维视频的位置信息,赋予了模型强大的多模态处理和推理能力,能够更好地理解和建模复杂的多模态数据。

三、模型性能

1. 基准测试成绩优异

在多个权威测评中,Qwen2-VL 创造了同等规模开源模型的最佳成绩。在 mathvista、docvqa、realworldqa、mtvqa 等基准测试中创下全球领先的表现,在文档理解方面优势尤其明显。与 GPT-4O 和 Claude3.5-Sonnet 等闭源模型相比,Qwen2-VL 在大部分指标上都达到了最优。

2. 高效的计算效率

在保证高性能的同时,Qwen2-VL 还具有较高的计算效率,能够在不同的硬件平台上快速运行,为大规模应用提供了可能。其量化版本的发布,进一步提高了模型的计算效率,降低了部署成本。

**四、**模型体验

在线体验:https://huggingface.co/spaces/Qwen/Qwen2-VL

五、模型下载

此次 Qwen2 - VL 进行了开源,其中包含两个尺寸的模型,分别是 Qwen2 - VL - 2B - Instruct 以及 Qwen2 - VL - 7B - Instruct,同时还提供了其 GPTQ 和 AWQ 的量化版本。

以下是模型相关链接:

Qwen2 - VL - 2B - Instruct:https://www.modelscope.cn/models/qwen/Qwen2-VL-2B-Instruct

Qwen2 - VL - 7B - Instruct:https://www.modelscope.cn/models/qwen/Qwen2-VL-7B-Instruct

我们推荐使用 ModelScope CLI 进行模型下载,具体命令如下:

modelscope download --model=qwen/Qwen2-VL-7B-Instruct --local_dir ./Qwen2-VL-7B-Instruct

下载完成如下:

**六、**模型推理

1. 安装依赖

pip install git+https://github.com/huggingface/transformers``   ``pip install qwen-vl-utils

安装如下:

2 模型推理

from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor``from qwen_vl_utils import process_vision_info``# default: Load the model on the available device(s)``# model = Qwen2VLForConditionalGeneration.from_pretrained(``# "./Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"``# )``import torch``   ``model = Qwen2VLForConditionalGeneration.from_pretrained(`  `"./Qwen2-VL-7B-Instruct",`  `torch_dtype=torch.bfloat16,`  `attn_implementation="flash_attention_2",``).to("cuda:0")``   ``# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.``# model = Qwen2VLForConditionalGeneration.from_pretrained(``# "Qwen/Qwen2-VL-7B-Instruct",``# torch_dtype=torch.bfloat16,``# attn_implementation="flash_attention_2",``# device_map="auto",``# )``# default processer``processor = AutoProcessor.from_pretrained("./Qwen2-VL-7B-Instruct")``# The default range for the number of visual tokens per image in the model is 4-16384.``# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.``# min_pixels = 256*28*28``# max_pixels = 1280*28*28``# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)``   ``messages = [`  `{`    `"role": "user",`    `"content": [`      `{`        `"type": "image",`        `"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",`      `},`      `{"type": "text", "text": "Describe this image."},`    `],`  `}``]``# Preparation for inference``text = processor.apply_chat_template(`  `messages, tokenize=False, add_generation_prompt=True``)``image_inputs, video_inputs = process_vision_info(messages)``inputs = processor(`  `text=[text],`  `images=image_inputs,`  `videos=video_inputs,`  `padding=True,`  `return_tensors="pt",``)``inputs = inputs.to("cuda")``# Inference: Generation of the output``generated_ids = model.generate(**inputs, max_new_tokens=128)``generated_ids_trimmed = [`  `out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)``]``output_text = processor.batch_decode(`  `generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False``)``print(output_text)

输出如下:

七、模型微调

1. 安装依赖

swift开源地址:https://github.com/modelscope/swift

在开始微调之前,先准备好环境

git clone https://github.com/modelscope/swift.git
cd swiftpip install -e .[llm]
pip install pyav qwen_vl_utils

2 模型微调

图像描述微调我们使用 coco-en-mini 数据集进行微调,该数据集的任务是对图片内容进行描述。

可以在 modelscope 上找到该数据集:https://modelscope.cn/datasets/modelscope/coco_2014_caption/summary

# 默认会将lora_target_modules设置为llm的所有linear
CUDA_VISIBLE_DEVICES=0,1,2,3 NPROC_PER_NODE=4 swift sft \
--model_type qwen2-vl-7b-instruct \
--model_id_or_path qwen/Qwen2-VL-7B-Instruct \
--sft_type lora \
--dataset coco-en-mini#20000 \
--deepspeed default-zero2

如果要使用自定义数据集,只需按以下方式进行指定:



`--dataset train.jsonl \`

`--val_dataset val.jsonl \`

自定义数据集支持json和jsonl样式,以下是自定义数据集的样例:



{"query": "<image>55555", "response": "66666", "images": ["image_path"]}
{"query": "eeeee<image>eeeee<image>eeeee", "response": "fffff", "history": [], "images": ["image_path1", "image_path2"]}
{"query": "EEEEE", "response": "FFFFF", "history": [["query1", "response2"`



微调后推理脚本如下:



CUDA_VISIBLE_DEVICES=0 swift infer \

--ckpt_dir output/qwen2-vl-7b-instruct/vx-xxx/checkpoint-xxx \
--load_dataset_config true --merge_lora true

八、结语

阿里通义千问的 Qwen2-VL 是一款具有强大功能和优异性能的视觉语言模型,它的发布为多模态技术的发展带来了新的机遇。无论是在视觉理解能力、多语言支持还是视觉智能体能力方面,Qwen2-VL 都表现出了卓越的性能,为各种应用场景的智能化发展提供了有力的支持。随着技术的不断发展和应用场景的不断拓展,相信 Qwen2-VL 将在未来发挥更加重要的作用。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值