在科技飞速发展的当下,AI 领域的动态时刻吸引着众人目光。最近,我深入研究了 AI 大模型与 AI Agent,发现其中蕴含着诸多值得探讨的行业现象与发展规律,接下来就为大家详细解读。
一、大模型:依旧遵循 “规模定律”,算力与资本的较量
Scaling Law(规模定律)在大模型领域依旧占据主导地位,它清晰地描述了模型性能与计算量、参数量、数据量之间的关系。用通俗的话来讲,就是 **“大力出奇迹”** 。通过投入更多的算力、配置更大的参数量、引入更多的数据,就能训练出性能更卓越的模型。
在这场算力与资本的竞赛中,Elon Musk 的 xAI 公司表现尤为突出。其打造的算力中心堪称全球唯一,配备了 10 万张英伟达 H100。这一壮举不仅彰显了强大的资本实力,也进一步推动了行业的发展。从投资角度来看,目前英伟达的股票依旧具备一定的潜力,值得关注;而 deepseek 的出现,也使得其他一些芯片成为了低成本的替代选择,为市场带来了新的竞争格局。
二、AI Agent:与大模型相辅相成,构建智能生态
AI Agent(人工智能代理)是能够自主决策和执行任务的智能系统。其中,通用 Agent 作为一种特殊分类,能够理解用户意图、制定行动计划并执行复杂任务。如果将大模型比作 “大脑”,那么通用 Agent 就如同 “四肢和五官”,二者紧密结合,才能完成各类任务。
目前,大模型的开发和研究仍处于活跃阶段,尚未出现收敛迹象。这意味着在未来一段时间内,我们仍将看到大量新的大模型公司涌现,同时算法和大模型架构也会不断推陈出新,为 AI 领域注入源源不断的活力。
三、通用 Agent 的发展困境与破局之道
尽管通用 Agent 前景广阔,但在发展过程中面临着诸多挑战:
- 落地困难:许多方案过于理想化,无法覆盖问题的全生命周期,在实际应用中,往往需要用户自行解决 “最后一公里” 的问题,这极大地影响了用户体验,导致大量早期用户流失。
- 竞争压力:通用 Agent 最大的竞争对手并非其他 Agent 公司,而是大模型公司。一旦大模型完成迭代,将普遍问题的解决方案纳入自身产品,通用 Agent 公司前期的努力可能付诸东流,这就是大模型公司对 AI Agent 公司的 “血脉压制”。
- 资源需求高:打造通用 Agent 对团队要求极高,既需要巨额资金投入,又需要顶尖人才。培养或聘请藤校、清北复交等高校数学或计算机相关专业的人才,不仅数量难以满足需求,高昂的成本也让许多企业望而却步。
- 抽象难度大:通用领域的问题复杂多样,难以进行有效抽象,团队在研究过程中容易遭遇挫折,长期的挫败感可能导致团队士气低落,甚至分崩离析。
针对这些问题,通用 Agent 的正确切入方式是从专有领域入手。通过耐心地覆盖上百家流程,不断积累经验,实现从量变到质变的飞跃,从而总结出通用方案。正如武术中 “掌比拳有力,指比掌有力” 的原理,通过减少受力面积来提升力量,在通用 Agent 的发展中,也是通过聚焦细分领域,不断打磨,最终实现突破。
四、AI Agent 在组织中的角色定位
在实际应用中,AI Agent 主要有两种模式:AI 主导和 AI 辅导。
- AI 主导:将驱动流程的责任交给 AI,这种模式会对组织内部结构产生较大影响,中层管理者可能面临被替代或架空的风险,高层管理者也会感到不安,因此在切入现有组织时面临较大阻力。毕竟,触及利益往往比触及灵魂更加困难。
- AI 辅导:在多数情况下,用户难以感受到明显帮助,因为实际工作任务并未减少,反而增加了与 AI 交互的环节,导致效率提升不明显。
因此,更合理的做法是在不同场景中发挥 AI Agent 的不同作用:在处理会议笔记、日程推进计划、邮件发送等不重要的事务时,让 AI Agent 充当 “智能秘书”;而在处理重要事务时,AI Agent 则作为 “咨询师”,负责信息收集与分析,提供多种解决方案。
以上就是关于 AI 大模型与 AI Agent 的深度分析。随着技术的不断进步,这两个领域还将发生更多变化。欢迎大家在评论区分享自己的看法,共同探讨 AI 的未来发展。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓