图像生成
- 应用场景: 图像生成
- 功能描述: 根据文本描述或参考图生成高质量图片,支持艺术、写实等多种风格。
- 用法示例: 输入提示词(如 “赛博朋克风格的城市夜景”),调整参数(分辨率、风格强度)。
- 代表应用: 即梦 AI
视频生成
- 应用场景: 视频生成
- 功能描述: 从文本 / 图片生成视频,或对现有视频进行编辑(换脸、补帧、去水印)。
- 用法示例: 输入脚本或分镜描述,选择时长、画风;或上传视频后指定修改需求。
- 代表应用: 即梦 AI, AI 视频绘图写作精灵
音乐生成
- 应用场景: 音乐生成
- 功能描述: 生成原创旋律、调整曲风(古典 / 电子)、匹配节奏或歌词。
- 用法示例: 输入情绪关键词(如 “激昂”)、选择乐器组合,或上传旋律片段扩展。
- 代表应用: 即梦 AI
网页摘要
- 应用场景: 网页摘要
- 功能描述: 快速提取长文章 / 网页的核心观点,支持多语言和关键数据标记。
- 用法示例: 粘贴链接或文本,指定摘要长度(如 “200 字总结”)。
- 代表应用: 讯飞星火
帮我写作
- 应用场景: 帮我写作
- 功能描述: 生成 / 润色文案,覆盖邮件、报告、小说、代码注释等。
- 用法示例: 输入主题和框架(如 “写一封求职信,突出 Python 技能”),迭代修改。
- 代表应用: 豆包, DeepSeek
AI 搜索
- 应用场景: AI 搜索
- 功能描述: 语义理解搜索意图,整合多源信息并结构化呈现(如对比表格)。
- 用法示例: 直接提问复杂问题(如 “对比 iPhone 15 和三星 S24 的电池续航”)。
- 代表应用: 豆包, DeepSeek
AI 阅读
- 应用场景: AI 阅读
- 功能描述: 解析 PDF / 论文 / 书籍,提取摘要、术语解释,支持问答互动。
- 用法示例: 上传文档后提问(如 “第三章的实验结论是什么?”)。
- 代表应用: 豆包
AI 翻译
- 应用场景: AI 翻译
- 功能描述: 高精度文本 / 语音翻译,保留专业术语和上下文语境。
- 用法示例: 输入文本或实时语音,选择领域(如 “医学翻译”)。
- 代表应用: 豆包
AI 编程
- 应用场景: AI 编程
- 功能描述: 代码生成、补全、调试,支持多语言(Python/JS 等)和框架适配。
- 用法示例: 描述功能需求(如 “用 Python 爬取微博热搜”),生成后人工优化。
- 代表应用: 豆包, DeepSeek
解题答疑
- 应用场景: 解题答疑
- 功能描述: 解答数学题、编程题、科学问题,提供步骤拆解。
- 用法示例: 拍照或输入题目(如 “求微分方程的通解”),获取分步解析。
- 代表应用: 豆包
学术搜索
- 应用场景: 学术搜索
- 功能描述: 精准检索论文、筛选高引文献,自动生成综述摘要。
- 用法示例: 输入研究主题(如 “神经网络在医疗诊断中的应用”),过滤年份 / 期刊。
- 代表应用: 豆包, 秘塔 AI 搜索
数据分析
- 应用场景: 数据分析
- 功能描述: 自动清洗数据、生成可视化图表,预测趋势并输出报告。
- 用法示例: 上传 Excel/CSV 文件,用自然语言指令分析(如 “预测下季度销售额”)。
- 代表应用: 豆包
语音通话
- 应用场景: 语音通话
- 功能描述: 交互方式从文字变成了语音聊天的方式,有嘴说出你的需求,AI 通过语音或文字的方式答复你。
- 用法示例: 接入通话后,AI 自动记录重点并识别任务项。
- 代表应用: 豆包
PPT 助手
- 应用场景: PPT 助手
- 功能描述: 根据大纲生成 PPT,自动排版、配图,提供演讲备注。
- 用法示例: 输入主题(如 “碳中和行业报告”),选择模板风格和页数。
- 代表应用: KiMi
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓