2025年AI大模型谁能笑到最后?

大模型竞争,初期可能是拼运气,拼机遇,拼个人的灵光乍现,最终一定还是会收敛到拼资源,现在已经快收敛到这个地步了

北美御三家,除了谷歌直接下场,OpenAI后面是微软,Anthropic背后是亚马逊。也因为如此,我看好谷歌,资源能直达核心,直接发力,也能避免很多压力,而后面两家给资源要经过一些弯弯绕绕。我最不看好OpenAI,神人奥特曼连自家大老板微软都各种技术封锁,现在这个光景还能拿到足够的资源吗?deepseek r1之后,最先魔怔,最先作妖的也是奥特曼。Anthropic卷毛也有点奥特曼化,但是情况还是要好不少,所以我给他排中间。

至于llama,已经是路边一条了,就如同meta在社媒领域的式微一样。牢马gork属于大力出奇迹,硬是供出了一个gork3撑场面,牢马赌的是大力还能继续出奇迹,他赌错了,不过xai能不能用好gork3带来的经验和独家超大杯优势,反哺主流模型的研究还是未知数。最重要的是,当初梭哈gork3的时候,牢马当世界首富如日中天,手上有特斯拉、spacex,又买了推特,押注懂王。现在的牢马被懂王分手,特斯拉被抵制,nasa预算还被自己的doge砍了,不好说还有没有心思搞ai战未来了

国内的话,我认为最先是字节和阿里,其次是deepseek和腾讯。阿里现阶段成果最多但是内部比较割裂混乱,c端产品完全就是一坨,不过这点算一个debuff影响不会太大,能被阿里的资源覆盖掉。字节发力较晚,能有今天的成果,说明团队水平不至于和llama一样拖垮整个进展,字节的优势在于公司实力和国际化水平。藤子背靠微信非常安逸,没有阿里这种all in ai的紧迫感,混元也在一步一步推进,大模型算是大厂的脸面,藤子还不至于让混元太掉队

deepseek是最特殊的一个,资源比不上大厂但背靠幻方也是不差钱的主,他们强就强在神人团队,总能找到正确的道路,然后暴打业界。但是在除了大模型技术本身,其他周边配套,那部分需要靠大厂组织大量工程师堆工作量敲出来的,deepseek做得奇差。deepseek自己的云服务,api直接不提供旧版本,官网webui动不动超时,而且还在用关键词作为审核,RLHF也不行,大模型幻觉严重。这些问题不算太大,毕竟人家模型开源。但是总有一天大模型的基础研发会进入瓶颈期,届时,所有玩家都找到了几乎大模型的最优解,deepseek无法再通过找到更正确的道路给自身带来技术优势,在这个条件下,deepseek的劣势将被无限放大,最终可能和一众初预训练初创公司一样泯然众人。不过这应该也是2025年之后的事了,眼下NSA、GRM还没有成品出来,起码v4或者r2还能再来一波王炸

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值