【Acwing91】最短Hamilton路径详细题解

题目描述

题目分析

首先我们来分析暴力做法,此时最大需要遍历(n=20)20个顶点的排列方式,总共计算的次数为20!,数量级远远大于10^8,显然是不合理的。

此时,我们可以对上述dfs遍历的众多情况进行剪枝,去掉没有用的情况。

假设有4个顶点,1,2,3,4,5,有以下若干路径

1--2--3--4--5   路径总长度为18

1--3--2--4--5   路径总长度为20

......

可以发现比如对于第四个点,在这个点之前经过的其他点的顺序可以是无关紧要的,这里的两条路径都是经过了1,2,3只不过顺序不同导致最终的路径总长度不同,所以对于经过一个特定的点集的路径,只需要知道并存储这种情况之下的最短路径即可。比如说上述,设点集A={1,2,3},令m[A,4]代表已经经过点集A,并且终点落在第四个点的所有路径。m的表示法是最开始暴力思想的体现,即存储所有的路径,但是经过刚才的分析,进行剪枝操作,可以令f[A,4]代表已经经过点集A,并且终点落在第四个点的最小路径长度,这也是本题用到的状态表示。

下面的问题是:如何表示点集A?

可以使用经典的二进制状态压缩操作:不再阐述统一的定义,直接具几个状态表示的实例,我相信就能清楚了:

f[11,2]:11的二进制表示为1011,所以代表已经经过第1,2,4个点并且终点为2的最短路径长度

f[7,2]:7的二进制表示为111,所以代表已经经过第1,2,3个点并且终点为2的最短路径长度

f[17,5]:7的二进制表示为10001,所以代表已经经过第1,5个点并且终点为5的最短路径长度

有了状态表示,状态计算也非常简单:

f[i,j]=min(f[i-{j},k]+weight[k,j])  k=1~n

所以在代码中最外层遍历不同的点集情况,最多为2^20,,第二层遍历不同的终点,20种情况,第三层遍历不同的中间结点,20种情况,总时间最多为4*10^8

注意第一层遍历和第二层遍历需要加一个判断条件:if(i>>j&1)判断点集i中是否包含点j

第二层遍历和第三层遍历也需要加一个判断条件:if(i>>k&1)判断点集i中是否包含点k,为什么不是判断点集i-{j}中是否包含k呢,因为j==k的时候,对整个结果没有影响

代码

#include<iostream>
#include<cstring>
using namespace std;
const int N=20,M=1<<N;
int weight[N][N];
int f[M][N];
int n;
int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            cin>>weight[i][j];
    memset(f,0x3f,sizeof f);
    f[1][0]=0;
    for(int i=1;i<1<<n;i++)
        for(int j=0;j<n;j++)
            if(i>>j&1)
                for(int k=0;k<n;k++)
                    if(i>>k&1)
                    f[i][j]=min(f[i][j],f[i-(1<<j)][k]+weight[k][j]);
    cout<<f[(1<<n)-1][n-1];
    return 0;
}

哈密顿回路是一种经过图中每个节点一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节点数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节点出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节点 if(pos == n) { // 判断最后一个节点是否与第一个节点相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节点 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节点是否可达 private static boolean isValid(int node, int pos) { // 如果节点已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节点与当前节点不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节点开始,依次尝试访问其它节点,直到找到一条哈密顿路径或者遍历完所有节点。在查找过程中,我们使用visited数组来标记节点是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节点是否可达。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值