python
文章平均质量分 73
python学习心得
锂享生活
这个作者很懒,什么都没留下…
展开
-
最小二乘法原理及其代码实现
假设目前我们有一些数据,x是输入,y是与之对应的输出。现在想利用这些已有的数据,从中发现出规律,来预测没有出现过的输入会产生什么样的输出。假设系统为单输入单输出系统,我们想在这个系统里找到数据背后的规律。规律需要通过模型来进行表征。为了表征规律可以使用不同的手段,不同的手段所建立的模型各有差异,有的模型精确度高但是使用麻烦,有的模型精确度欠缺但是使用简便。下面要介绍典型的建模方法——最小二乘法。这里说的建模是指建立数学模型,即通过数学表达式来表征规律。通常最容易想到的表达式就是一次函数,二次函数了。原创 2024-06-11 20:53:31 · 908 阅读 · 0 评论 -
python:删掉重复行之drop_duplicates()用法
是Pandas中一个非常实用的方法,用于从DataFrame或Series中删除重复的行或值,只保留第一次出现的记录。原创 2024-05-17 09:20:11 · 6717 阅读 · 0 评论 -
python:rename函数用法
在Pandas库中,rename函数是一个非常实用的方法,以下是rename函数的基本用法、参数以及一些示例。原创 2024-05-15 09:46:30 · 1878 阅读 · 0 评论 -
首字母大写,其余小写:Python 中的 str.capitalize() 方法解析
是 Python 字符串方法,它对于需要标准化字符串格式的情况非常有用。例如,处理名字时,可以将名字格式化为首字母大写,其他字母小写的形式。原创 2024-05-22 09:01:17 · 1064 阅读 · 0 评论 -
python:merge的用法
在Python的Pandas库中,merge函数是一种常用的工具,以下是merge。原创 2024-05-15 09:22:04 · 2148 阅读 · 0 评论 -
每日一题13:Pandas:方法链
本题用到了布尔索引以及排序函数。原创 2024-05-16 00:00:00 · 706 阅读 · 0 评论 -
Python:Pandas删除特定行——dropna的用法
dropna()是Pandas库中的一个非常实用的函数,用于处理缺失数据。它允许你从DataFrame或Series中删除含有缺失值(NaN,None等)的行或列。以下是dropna()原创 2024-05-06 08:21:08 · 1540 阅读 · 0 评论 -
python:query()函数的用法
query()是Pandas库中一个非常实用的方法,它允许直接使用类似于的表达式来筛选DataFrame中的数据。这意味着可以用简洁的字符串表达式来执行复杂的过滤操作,而无需编写多行传统的Python条件语句。尤其是在需要进行动态或条件性数据查询时。原创 2024-05-03 00:15:00 · 378 阅读 · 0 评论 -
python : isin()使用方法
方法会返回一个布尔类型的Series或DataFrame,对应原始数据中的每个元素,如果该元素存在于。方法主要与Pandas库中的Series和DataFrame对象关联,这个方法非常有用,特别是在进行数据筛选、数据分析或是处理缺失值等场景。将只保留fruit列为'apple'的行。中,则返回True,否则返回False。是Pandas中一个强大且灵活的方法,2.DataFrame例子。1.Series例子。原创 2024-05-02 19:48:14 · 747 阅读 · 1 评论 -
Python数据可视化基础(一)——借助matplotlib打造专业级图表
本篇博客将系统性地探讨如何利用Python的matplotlib库进行基础数据可视化操作,从创建画布开始,逐步引导读者掌握绘制折线图、柱形图、散点图、百分比堆积柱状图、簇形柱状图和双Y轴叠加图等重要图表类型的方法。原创 2024-04-20 21:02:02 · 1221 阅读 · 0 评论 -
Python 解读:如何使用 ceil 和 floor 函数进行数学运算
在 Python 中,`ceil` 和 `floor` 函数是用于数学计算的两个非常重要的函数,这两个函数位于 Python 的math模块中,因此在使用前需要先导入此模块。原创 2024-05-01 07:32:17 · 1221 阅读 · 2 评论 -
python处理mat文件实例(NASA电池数据)
在学习python过程中,有时需要来自于matlab的数据,需要从mat文件提取数据并转换为python可以使用的数据。下面通过实例来介绍操作过程。转载 2024-04-18 16:14:36 · 640 阅读 · 1 评论 -
python:一元通用函数(一)
通用函数,也可称为ufunc,是一种在ndarray数据中进行逐元素操作的函数。某些简单函数接收一个或多个标量数值,并产生一个或多个标量结果,而通用函数就是对这些简单函数的向量化封装。原创 2024-04-25 09:14:34 · 463 阅读 · 1 评论 -
python:一元通用函数(二)
通用函数,亦称ufunc,指的是在ndarray数据结构中执行元素级操作的特殊函数。与那些仅接收一个或多个标量值并输出相应标量结果的简单函数不同,通用函数实际上是这些简单函数的一种向量化扩展。它们能够作用于整个数组,对每个元素执行相同的操作,从而大大提高了数据处理效率。简而言之,通用函数就是对标量函数的矢量化封装,使其能够一次性处理数组中的每个元素。原创 2024-04-27 00:00:00 · 569 阅读 · 0 评论 -
python格式转换与时间类型
数据预处理,通常包括数据类型的转换、和index的转换。今天将学习:1. 时间类型数据2. 字符转时间函数3. 时间转字符函数4. 格式转换函数。原创 2024-04-15 07:40:51 · 1751 阅读 · 1 评论 -
python:arange()和range()区别
参数通常是三个:range(stop), range(start, stop), 或 range(start, stop, step),分别表示终止位置、起始位置和步长,所有参数都是整数,而且步长默认为1。参数与 range()类似,但允许使用浮点数步长,例如:`numpy.arange(start, stop, step, dtype=None),其中 dtype 参数允许指定输出数组的数据类型。arange()函数在NumPy库中,它也是用来生成等差数列,但相比 range() 功能更加强大。原创 2024-04-23 08:00:00 · 1192 阅读 · 0 评论 -
python:loc与iloc介绍
loc是基于行标签(index)和列标签(columns)进行选择的。语法:dataframe.loc[行标签, 列标签]/loc[index切片或列表,columns切片或列表]可以同时选择多行和多列# 创建一个DataFrame# 使用loc选择行和列print(df.loc[1:3, ['Name', 'Age']]) # 选择第2行到第4行(基于0的索引),以及'Name'和'Age'列。原创 2024-04-14 14:58:20 · 1259 阅读 · 1 评论 -
《Python基础统计函数全面指南:mean(), round(), max(), min(), sum()的应用与实践》
在python进行数据分析时,常需要对数据进行求平均、中位数、求最大值、最小值等操作,本文通过实例简要介绍常见的统计函数的用法。原创 2024-04-19 06:57:36 · 2680 阅读 · 1 评论 -
Pandas:删掉重复行(drop_duplicates()用法)
在Python的数据分析领域,drop_duplicates()是一个非常实用的方法,主要用于数据清洗过程中去除数据框中的重复行。原创 2024-05-05 09:48:18 · 4071 阅读 · 1 评论 -
浅析Python random模块:轻松实现各类随机化功能(一)
在NumPy库中的numpy.random模块:生成一个或多个在[0, 1)区间上均匀分布的随机浮点数数组。如果提供多个参数,它们会被解释为数组的维度。:生成一个或多个服从标准正态分布(平均值为0,标准差为1)的随机浮点数数组。:生成指定范围内的整数,可以设置尺寸以生成多维数组。:从一维数组a中根据可选的概率分布抽样出大小为size的样本,可以选择是否允许替换。:生成正态分布(高斯分布)的随机数,可指定均值(loc)和标准差(scale)。:生成在指定区间的均匀分布随机数。:生成符合二项分布的随机数。原创 2024-04-26 00:00:00 · 1071 阅读 · 1 评论 -
基于 Python 的锂电池寿命预测(NASA)
本文是对学习电池领域的一次笔记记录,通过阅读代码学习编程思想,理解电池老化相关的参数关系。为后续的论文的代码复现打基础。后续会更新一些关于电池建模,状态估计等相关的个人的学习心得,以此不断进步。转载 2024-04-18 23:13:48 · 920 阅读 · 2 评论 -
深入理解Python中的numpy.var()与numpy.std():方差与标准差的计算艺术
本文将带你探索Python中的两个重要统计函数——var()与std()的用法及其背后的统计学意义。首先,我们会详细阐述方差的概念,它是衡量一组数值数据离散程度的关键指标,并通过实例演示如何使用numpy.var()计算样本方差与总体方差,以及ddof参数的作用。随后,我们将进一步探讨标准差,它是方差的平方根,直观反映了数据点与均值的平均偏离程度,通过numpy.std()函数实现标准差的计算。此外,文章将进一步拓展不在numpy环境下var()与std()的用法。原创 2024-04-21 11:24:37 · 4465 阅读 · 1 评论