每日一题
文章平均质量分 68
通过每日更新一题,要求自己每日必须学会或复习一个小知识点,达到量变到质变的目的。
锂享生活
这个作者很懒,什么都没留下…
展开
-
线性代数:每日一题1/特征值与相似对角化
下面看必要性:B可对角化,能推出有2个线性无关的特征向量。但是注意,线性无关的特征向量不能推出特征值互不相同,如:[1,0],[0,1]。所以不能推出A有两个不相等的特征值。由题目可知,A,B矩阵相似。A的特征值与与B的特征值相同。由定理1,2可知,A矩阵可相似对角化。由于A,B矩阵相似,故B可相似对角化。设A, B 为二阶矩阵,且 AB = BA , 则“A有两个不相等的特征值”是“B可对角化"的()是矩阵 A 的互不相同的特征值,n阶矩阵可相似对角化的充要条件。D.既不充分也不必要条件。原创 2024-08-14 15:58:57 · 1033 阅读 · 2 评论 -
每日一题45:统计移除递增子数组的数目
给你一个下标从开始的整数数组nums。如果nums的一个子数组满足:移除这个子数组后剩余元素,那么我们称这个子数组为子数组。比方说,中的[3, 4]是一个移除递增子数组,因为移除该子数组后,变为[5, 6, 7],是严格递增的。请你返回nums中子数组的总数目。,剩余元素为空的数组也视为是递增的。指的是一个数组中一段连续的元素序列。10。原创 2024-07-11 13:42:23 · 390 阅读 · 0 评论 -
每日一题44:合作过至少三次的演员和导演
唯一的 id 对是 (1, 1),他们恰好合作了 3 次。编写解决方案找出合作过至少三次的演员和导演的 id 对。timestamp 是这张表的主键(具有唯一值的列).题源:leetcode。原创 2024-06-16 05:13:18 · 477 阅读 · 0 评论 -
每日一题43:每天的领导人和合伙人
在 2020-12-8,丰田(toyota)有领导者 = [0, 1] 和合伙人 = [0, 1, 2] ,同时本田(honda)有领导者 = [1, 2] 和合伙人 = [1, 2]。在 2020-12-7,丰田(toyota)有领导者 = [0] 和合伙人 = [1, 2] ,同时本田(honda)有领导者 = [0, 1, 2] 和合伙人 = [1, 2]。该表包含日期、产品的名称,以及售给的领导和合伙人的编号。该表没有主键(具有唯一值的列)。返回结果格式如下示例所示。名称只包含小写英文字母。原创 2024-06-15 21:44:09 · 662 阅读 · 0 评论 -
每日一题42:最小化字符串长度
创建集合s = set() # 创建一个空集合s = {1, 2, 3} # 创建一个包含元素 1, 2, 3 的集合s = set([1, 2, 3]) # 通过列表创建集合# 添加和删除元素s.add(4) # 向集合中添加元素 4s.remove(3) # 从集合中删除元素 3,如果元素不存在则会引发 KeyErrors.discard(2) # 从集合中删除元素 2,如果元素不存在也不会报错# 集合运算intersection = s1 & s2 # 交集。原创 2024-06-14 09:32:55 · 553 阅读 · 0 评论 -
每日一题41:按日期分组消费产品
对于2020-05-30,出售的物品是 (Headphone, Basketball, T-shirt),按词典序排列,并用逗号 ',' 分隔。对于2020-06-01,出售的物品是 (Pencil, Bible),按词典序排列,并用逗号分隔。对于2020-06-02,出售的物品是 (Mask),只需返回该物品名。编写解决方案找出每个日期、销售的不同产品的数量及其名称。该表没有主键(具有唯一值的列)。此表的每一行都包含产品名称和在市场上销售的日期。| 列名 | 类型 |原创 2024-06-13 23:08:23 · 339 阅读 · 0 评论 -
每日一题40:取整购买的账户余额
本题的答案有一点问题,这里不能写加9,需要写加5才能通过用例。2024.6.12。原创 2024-06-12 10:01:35 · 275 阅读 · 0 评论 -
每日一题39:甲板上的战舰
这题的标题应该是《棋盘上的战舰》,来源于 海战棋,把横着或竖着的连续 X 看成一艘战舰,统计棋盘上有多少艘战舰。战舰的个数,等于战舰「头部」的个数。如下图,我们只需要统计蓝色 X 的个数,即为战舰的个数。如果 j>0,那么 (i,j−1)(i,j-1)(i,j−1) 不能是 X。如果 i>0,那么 (i−1,j)(i-1,j)(i−1,j) 不能是 X。理解题意,通过枚举,关键是想到if的条件设置。题源:Leetcode。原创 2024-06-11 19:32:43 · 388 阅读 · 0 评论 -
每日一题38:数据分组之订单最多的客户
注意订单数为0的情况。2024.6.10。原创 2024-06-10 14:31:11 · 556 阅读 · 0 评论 -
每日一题37:数据分组之超过5名学生的课
考察groupby的用法。2024.6.9。原创 2024-06-09 08:11:51 · 414 阅读 · 0 评论 -
每日一题36:数据分组之科目种类数量
drop_duplicates()和groupby()的用法。2024.6.8。原创 2024-06-08 08:11:19 · 459 阅读 · 0 评论 -
每日一题35:数据分组之游戏玩法分析I
先排序,重点关注groupby的用法。2024.6.7。原创 2024-06-07 22:19:43 · 443 阅读 · 0 评论 -
每日一题34:数据分组之查找每个员工花费的总时间
雇员 1 有三次进出: 有两次发生在 2020-11-28 花费的时间为 (32 - 4) + (200 - 55) = 173, 有一次发生在 2020-12-03 花费的时间为 (42 - 1) = 41。雇员 2 有两次进出: 有一次发生在 2020-11-28 花费的时间为 (33 - 3) = 30, 有一次发生在 2020-12-09 花费的时间为 (74 - 47) = 27。在 SQL 中,(emp_id, event_day, in_time) 是这个表的主键。题源:Leetcode。原创 2024-06-06 19:56:50 · 1403 阅读 · 0 评论 -
每日一题33:数据统计之广告效果
注意分母为0的情况时如何处理。原创 2024-06-05 00:00:00 · 281 阅读 · 0 评论 -
每日一题32:数据统计之按分类统计薪水
本题用到了cut,这里记住区间是左闭右开。2024.6.4。原创 2024-06-04 00:00:00 · 442 阅读 · 0 评论 -
每日一题31:数据统计之即时配送食物
这里用到了字符串转时间类型。python格式转换与时间类型2024.6.3。原创 2024-06-03 00:00:00 · 1086 阅读 · 0 评论 -
每日一题30:数据统计之富有客户数量
nunique()是Pandas中的一个函数,用于计算指定Series中不重复项的数量(即去除重复项后的唯一值数量)。在这个问题中,我们使用nunique()函数来计算具有至少一个订单金额大于500的唯一客户数量。我们首先对过滤后的DataFrame中的列进行统计。然后,调用nunique()方法计算该列中唯一值的数量,也就是有多少个不重复的客户ID。最终的rich_count变量就代表具有至少一个订单金额大于500的唯一客户的数量。2024.6.2。原创 2024-06-02 00:00:00 · 528 阅读 · 0 评论 -
每日一题29:数据操作之数据重塑
每日一题12:Pandas:数据重塑-融合2024.6.1。原创 2024-06-01 00:00:00 · 834 阅读 · 0 评论 -
每日一题28:数据操作之删除重复的电子邮件
这道题考察sort_values和drop_duplicates的用法。原创 2024-05-31 16:26:31 · 849 阅读 · 0 评论 -
每日一题27:数据操作之分数排名
这里用到了排序和选择所需列输出的知识。2024.5.30。原创 2024-05-30 09:01:11 · 426 阅读 · 0 评论 -
每日一题26:数据操作之部门工资最高的员工
这题考察pd.merge和pd.groupby的使用,后续会出一篇关于它们的用法。2024.5.29。原创 2024-05-29 08:49:42 · 571 阅读 · 0 评论 -
每日一题25:数据操作之第二高的薪水
该题和昨天的题类似,甚至说更简单。这里值得注意的点是[pd.NA],而不能写成['null']2024.5.28。原创 2024-05-28 07:18:37 · 475 阅读 · 0 评论 -
每日一题24:数据操作之第N高的薪水
中的 f-string 语法替换为具体值。这个修改会确保在 DataFrame 的列名中包含实际的 N 值。该表的每一行都包含有关员工工资的信息。在 SQL 中,id 是该表的主键。个最高工资,查询结果应该为。题源:Leetcode。查询结果格式如下所示。原创 2024-05-27 10:38:29 · 565 阅读 · 0 评论 -
每日一题23:统计文本中单词出现的次数
使用 str.contains()方法来查找 content列中包含匹配正则表达式 r'\sbull\s'的行。正则表达式寻找以空白字符(空格)开头和结尾的 “bull” 字符串:\s表示空白字符(比如空格、制表符等)。因此,匹配的是整个单词 “bull”,而不会匹配诸如 “bulldog” 或 “bullish” 这样的部分匹配。2024.5.26。原创 2024-05-26 14:34:34 · 629 阅读 · 0 评论 -
每日一题22:Pandas:字符串函数之患某种疾病的患者
这部分代码是选取DataFramepatients中名为conditions的列。.str:这是pandas中用于对Series(即一维数组,这里是conditions列)中的每个元素应用字符串方法的访问器。:这部分是用来检查每个conditions列的元素是否包含特定的正则表达式模式。这里的模式是\bDIAB1\b\b是边界匹配符,表示DIAB1必须作为一个完整的单词出现,而不是作为其他单词的一部分。regex=True参数表明我们正在使用正则表达式进行匹配。2024.5.25。原创 2024-05-25 14:12:48 · 824 阅读 · 0 评论 -
每日一题21:Pandas:字符串函数之查找拥有有效邮箱的用户
正则表达式(Regular Expression),简称为 regex,是一种用于描述字符串模式的表达式。它是由普通字符(例如字母、数字)和特殊字符(称为元字符)组合而成的表达式,用来匹配和查找符合特定模式的文本。正则表达式提供各种功能^:表示一个字符串或行的开头[a-z]:表示一个字符范围,匹配从 a 到 z 的任何字符。[0-9]:表示一个字符范围,匹配从 0 到 9 的任何字符。[a-zA-Z]:这个变量匹配从 a 到 z 或 A 到 Z 的任何字符。原创 2024-05-24 08:21:54 · 812 阅读 · 0 评论 -
每日一题20:Pandas:字符串函数之字修复表中的名字
这里考察str.capitalize()的使用,该方法将名字的首字母大写,其余全部小写。编写解决方案,修复名字,使得只有第一个字符是大写的,其余都是小写的。该表包含用户的 ID 和名字。名字仅由小写和大写字符组成。user_id 是该表的主键(具有唯一值的列)。返回结果格式示例如下。题源:Leetcode。具体介绍请参考另一篇。原创 2024-05-23 00:00:00 · 603 阅读 · 0 评论 -
每日一题19:Pandas:字符串函数之计算特殊奖金
核心:.loc用法。原创 2024-05-22 00:00:00 · 500 阅读 · 0 评论 -
每日一题18:Pandas:字符串函数之无效的推文
str.len()函数是Pandas库中用于计算Series中每个元素的长度的一个方法。特别地,当应用于字符串类型的Series时,它会返回一个整数序列,表示每个字符串元素的字符数。功能:此函数计算字符串序列中每个元素的长度(即字符数)。语法# 示例数据# 应用str.len()计算推文长度132024.5.21。原创 2024-05-21 00:00:00 · 633 阅读 · 0 评论 -
每日一题16:Pandas:布尔索引之从不订购的客户
本题考察布尔索引和merge的用法,merge的用法参考我的另一篇博客。另外,本题还考察rename的用法。2024.5.19。原创 2024-05-19 00:00:00 · 845 阅读 · 0 评论 -
每日一题15:Pandas:布尔索引之可回收且低脂的产品
本题考察布尔索引的运用。布尔索引步骤构建条件表达式:首先,你需要创建一个或多个表达式来表示你的筛选条件。对于数值类型的列,你可以直接比较大小;对于类别或其他类型的数据,可能需要使用.isin()等方法来匹配值。应用条件:将这些条件应用到DataFrame上,这会返回一个布尔值的Series,其中True表示该行满足条件,False则不满足。用作索引:最后,你可以直接把这个布尔Series用作DataFrame的索引来选取数据。2024.5.17。原创 2024-05-18 00:00:00 · 333 阅读 · 0 评论 -
每日一题14:Pandas:布尔索引实践之“大的国家”
本题用到了布尔索引。在Pandas中,布尔索引是一种强大的功能,它允许你根据条件选择DataFrame或Series中的数据子集。具体到本题中,如果我们有一个包含国家信息的DataFrame,并希望筛选出满足特定条件(比如面积大于300万平方公里或人口超过2500万)的“大国”,我们可以使用布尔索引来完成这一任务。布尔索引步骤构建条件表达式:首先,你需要创建一个或多个表达式来表示你的筛选条件。对于数值类型的列,你可以直接比较大小;对于类别或其他类型的数据,可能需要使用.isin()等方法来匹配值。原创 2024-05-17 00:00:00 · 328 阅读 · 0 评论 -
每日一题13:Pandas:方法链
本题用到了布尔索引以及排序函数。原创 2024-05-16 00:00:00 · 706 阅读 · 0 评论 -
每日一题12:Pandas:数据重塑-融合
将宽格式变为长格式。原创 2024-05-15 00:00:00 · 734 阅读 · 0 评论 -
每日一题11:Pandas:数据重塑-透视
数据框行列变换。原创 2024-05-14 00:00:00 · 492 阅读 · 0 评论 -
每日一题10:Pandas:重塑数据-联结
concat()是 Pandas 中一个非常强大的函数,用于沿着一个轴(行或列)组合多个对象(主要是 DataFrame 和 Series)。下面是concat()函数的基本用法、参数和一些示例。原创 2024-05-13 00:00:00 · 1308 阅读 · 1 评论 -
每日一题9:Pandas-填充缺失值
Pandas中fillna用法原创 2024-05-12 08:39:39 · 592 阅读 · 1 评论 -
每日一题7:Pandas-重命名列
介绍rename的用法原创 2024-05-10 00:00:00 · 464 阅读 · 0 评论 -
每日一题8:Pandas-改变数据类型
这里考察了apply和astype的用法。对于DataFrame,apply可以作用于整行或整列,默认是对列操作。对于本题是对整列的元素进行了四舍五入,astype是将数据类型将浮点类型转换为整形,如果不进行圆整,转换时可能会出现问题。2024.5.11。原创 2024-05-11 00:00:00 · 187 阅读 · 0 评论 -
每日一题5:Pandas-修改列
考察.loc的使用方法,查看我之前的博客.loc总结。原创 2024-05-08 00:00:00 · 404 阅读 · 0 评论