python:merge的用法

目录

1.merge基本语法

2.参数说明

3.示例


在Python的Pandas库中,merge函数是一种常用的工具,用于根据一个或多个键将两个或多个DataFrame对象合并在一起。以下是merge函数的基本用法和参数解释:

1.merge基本语法

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=False,
         suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)

2.参数说明

  • left: 左侧的DataFrame对象。
  • right: 右侧的DataFrame对象。
  • how: 指定合并方式,可选值有:
    • 'inner'(默认):内连接,只包含两个DataFrame中键相匹配的行。
    • 'left':左连接,包含左侧DataFrame的所有行,右侧无匹配时填充NaN。
    • 'right':右连接,包含右侧DataFrame的所有行,左侧无匹配时填充NaN。
    • 'outer':外连接,包含两个DataFrame的所有行,无匹配时填充NaN。
  • on: 指定用于连接的列名(或列名列表),左右DataFrame中需有相同列名。
  • left_on / right_on: 分别指定左侧和右侧DataFrame中用于连接的列名。
  • left_index / right_index: 是否使用左侧或右侧的索引作为连接键,默认为False
  • sort: 是否对结果进行排序,默认为False
  • suffixes: 当左右DataFrame中有重名列但未被用作连接键时,为这些列添加的后缀。
  • copy: 是否复制数据,默认为True
  • indicator: 是否添加一列 _merge 来标记行的来源,默认为False。可选值有'left_only''right_only''both'
  • validate: 验证合并操作是否合法,比如可以设置为'one_to_one''one_to_many'等。

3.示例

假设我们有两个DataFrame,df1df2,分别代表不同的数据集,且它们有一个或多个共有的列可以作为连接键。

import pandas as pd

# 示例数据
data1 = {'key': ['A', 'B', 'C', 'D'], 'value1': [1, 2, 3, 4]}
data2 = {'key': ['B', 'D', 'E', 'F'], 'value2': [5, 6, 7, 8]}

df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)

# 使用inner join合并
merged_inner = pd.merge(df1, df2, on='key')

# 使用left join合并
merged_left = pd.merge(df1, df2, on='key', how='left')

# 使用right join合并
merged_right = pd.merge(df1, df2, on='key', how='right')

# 使用outer join合并
merged_outer = pd.merge(df1, df2, on='key', how='outer')

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值