【深度学习】2-模型在测试集的准确率大于训练集

🚩 前言

🚩 活动地址:CSDN21天学习挑战赛
🚀 博主主页:清风莫追

保持输入,保持输出!(引用我某朋友的一句话)



1. 问题描述

在模型训练过程中突然发现,模型的准确率在测试集上居然比在训练集上还要高。但是我们知道,我们训练模型的方式就是在训练集上最小化损失。因此,模型在训练集上有着更好的表现,才应该是正常的现象。
那么,是什么导致了在测试集上准确率更高的现象呢?

模型训练结果:

在这里插入图片描述

2. 解决问题

2. 1. 欠拟合

后来我咨询了某大佬,她说:“多训练几次看看,前几次一直在欠拟合”,我顿时感觉,好建议

增加训练周期数:
在这里插入图片描述

果然!随着训练周期的增加,模型准确率慢慢地回归了正轨。在训练集上的准确率又超过了测试集上的。

2. 2. 小批量统计的滞后性

但我依然有所疑惑,为什么在训练周期较少的欠拟合状态下,会出现模型在测试集上准确率更高的情况呢?它们之间有什么关系?
有一篇博文给出的部分解释,我觉得很合理,比较符合我遇到的情况:

训练集的准确率是每个batch之后产生的,而验证集的准确率一般是一个epoch后产生的,验证时的模型是训练一个个batch之后的,有一个滞后性,可以说就是用训练得差不多的模型用来验证,当然准确率要高一点。

也就是说,问题的出现和个人具体统计训练集准确率的方式有关。如果是在每个训练周期结束后再统计训练集上的模型准确率,而不是在每个小批量结束就统计,那就不会出现这样的问题。
当然,光说是不行的,得实践。我检查了之前的模型代码,发现我训练集上的准确率确实是每个小批量结束后就统计的。那不妨试试训练集的准确率也在每个周期结束后再进行统计

每个训练周期后再统计训练集上的准确率( train acc 2):
在这里插入图片描述

容易发现,即使在欠拟合的状态下,如果训练集和测试集准确率的统计方式相同,模型还是会在训练集上的准确率更高。


参考文献:
神经网络与深度学习—验证集(测试集)准确率高于训练集准确率的原因


小结

遇到问题,看一看别人的想法,可能会让自己瞬间茅塞顿开。一个人钻牛角尖不可取。

  • 32
    点赞
  • 124
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 21
    评论
好的,以下是基于PyTorch的ResNet34网络实现图像二分类的代码,包括训练集、验证集和测试集代码,以及使用tqdm库实现训练进度的代码。 首先需要导入需要的库,包括PyTorch、torchvision和tqdm: ```python import torch import torchvision import torchvision.transforms as transforms from torch.utils.data import random_split from torch.utils.data import DataLoader import torch.nn as nn import torch.optim as optim from tqdm import tqdm ``` 接着需要定义数据集的路径和一些超参数: ```python # 数据集路径 data_path = "./data/" # 超参数 num_epochs = 10 batch_size = 64 learning_rate = 0.001 ``` 然后需要定义数据转换,这里使用了常见的数据增强方式: ```python # 数据转换 transform = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) ``` 接着加载数据集: ```python # 加载数据集 dataset = torchvision.datasets.ImageFolder(root=data_path, transform=transform) # 划分训练集、验证集和测试集 train_size = int(0.8 * len(dataset)) val_size = int(0.1 * len(dataset)) test_size = len(dataset) - train_size - val_size train_dataset, val_dataset, test_dataset = random_split(dataset, [train_size, val_size, test_size]) # 创建数据加载器 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) ``` 然后定义ResNet34网络模型: ```python # 定义模型 class ResNet34(nn.Module): def __init__(self, num_classes=2): super(ResNet34, self).__init__() self.resnet = torchvision.models.resnet34(pretrained=True) self.fc = nn.Linear(512, num_classes) def forward(self, x): x = self.resnet(x) x = self.fc(x) return x model = ResNet34() ``` 接着定义损失函数和优化器: ```python # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) ``` 然后定义训练函数和验证函数: ```python # 训练函数 def train(): model.train() train_loss = 0 train_acc = 0 for inputs, labels in tqdm(train_loader): inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) epoch_loss = train_loss / len(train_dataset) epoch_acc = train_acc.double() / len(train_dataset) return epoch_loss, epoch_acc # 验证函数 def validate(): model.eval() val_loss = 0 val_acc = 0 for inputs, labels in tqdm(val_loader): inputs = inputs.to(device) labels = labels.to(device) with torch.no_grad(): outputs = model(inputs) loss = criterion(outputs, labels) val_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) val_acc += torch.sum(preds == labels.data) epoch_loss = val_loss / len(val_dataset) epoch_acc = val_acc.double() / len(val_dataset) return epoch_loss, epoch_acc ``` 最后开始训练和测试: ```python # 判断是否有GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) # 将模型移动到GPU上 model.to(device) # 训练和测试 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch + 1, num_epochs)) print('-' * 10) train_loss, train_acc = train() print('Train Loss: {:.4f} Train Acc: {:.4f}'.format(train_loss, train_acc)) val_loss, val_acc = validate() print('Val Loss: {:.4f} Val Acc: {:.4f}'.format(val_loss, val_acc)) # 测试模型 model.eval() test_acc = 0 for inputs, labels in tqdm(test_loader): inputs = inputs.to(device) labels = labels.to(device) with torch.no_grad(): outputs = model(inputs) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_acc = test_acc.double() / len(test_dataset) print('Test Acc: {:.4f}'.format(test_acc)) ``` 以上就是基于PyTorch的ResNet34网络实现图像二分类的代码,包括训练集、验证集和测试集代码,以及使用tqdm库实现训练进度的代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风莫追

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值