每日算法:Dijkstra例题

题目来源:算法笔记-亚历山大

第五天

题目:

输入格式:

第一行输入整数n, m, s;分别是图的顶点数,边数(单项边),起点编号;

接下来的m行,每行输入3个整数,v1, v2,w;代表顶点v1到v2有一条权重为w的边;

6 8 0
0 1 1
0 3 4
0 4 4
1 3 2
2 5 1
3 2 2
3 4 3
4 5 3

输出格式:

空格隔开的n个整数,代表n个顶点到起点的最短距离;

0 1 5 3 4 6

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1010;
int G[N][N];
bool vis[N] = {0};
int d[N];
int n, m, s;//n个顶点,m条边,起点编号是s 
void Dijkstra(int s) {
	//对结果数组进行初始化
	memset(d, 0x3f, sizeof(d));
	d[s] = 0;
	
	for(int i = 0; i < n; i++) {	//一共要向集合S中加n个点(其实最多是n个点,因为可能有的点与起点不连通)
	
		int MIN = INF, u = -1;
		for(int i = 0; i < n; i++) {
			if(d[i] < MIN && vis[i] == 0) {
				u = i;
				MIN = d[i];
			}
		} 
		if(u == -1) return ;
		vis[u] = 1;

		
		//不会再访问自己顶点,因为已经加入到集合S了 
		for(int i = 0; i < n; i++) {
			if(vis[i] == 0) {
				d[i] = min(d[i], d[u] + G[u][i]);
			} 
		}
		
	}
}
int main(void) {
	scanf("%d%d%d", &n, &m, &s);
	//初始化图不要忘记:这里把自己到自己的距离也设置为了无穷大 
	memset(G, 0x3f, sizeof(G));
	
	for(int i = 0; i < m; i++) {
		int id1, id2, w;
		scanf("%d%d%d", &id1, &id2, &w);
		G[id1][id2] = w; 
	}
	Dijkstra(s);
	for(int i = 0; i < n; i++) {
		printf("%d ", d[i]);
	} 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前路漫漫亦灿灿上岸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值