【期末复习】例题讲解Dijkstra算法

Dijkstra算法是一个用于找出图中单源点到所有其他顶点最短路径的算法。文章通过一个实例展示了算法的步骤:从源点1开始,逐步将最近的未知顶点加入已知顶点集合,更新其邻接点的距离,直到所有顶点都被包含在内,从而找到1到7的最短路径。

使用场景

Dijkstra算法用于解决单源点最短路径问题,即给一个顶点作为源点,依次求它到图中其他n-1个顶点的最短距离。

例题讲解

Dijkstra算法将图中所有顶点分成两部分,第一部分是已知到源点最短距离的顶点Known(K),第二部分是不知道到源点最短距离的顶点Unknown(U)。初始化K中只有源点一个顶点,U中有n-1个顶点。如下图,我们求源点1终点7的最短路径。

根据上图,可以得到如下表:

K

K中顶点到源点的距离

U

U中顶点到源点的距离

1

0

2

无穷

3

无穷

4

无穷

5

无穷

6

无穷

7

无穷

1-1. 找到顶点1的邻接点2和3,然后更新它们到源点1的距离得到下表

K

K中顶点到源点的距离

U

U中顶点到源点的距离

1

0

2

2

3

5

4

无穷

5

无穷

6

无穷

7

无穷

1-2. 更新K,U中的顶点。发现U中2到源点的距离最小,把2加入K中得到下表

K

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诺坎普的风间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值