第一关
import org.apache.log4j.{Level, Logger}
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object GraphX_Test_stu{
def main(args:Array[String]): Unit ={
//屏蔽日志
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
//设置运行环境
val conf = new SparkConf().setAppName("SimpleGraph").setMaster("local")
val sc = new SparkContext(conf)
//设置顶点和边,注意顶点和边都是用元组定义的Array
//顶点的数据类型是VD:(String,Int)
val vertexArray = Array(
(1L,("Bob",89)),
(2L,("Sunny",70)),
(3L,("Tony",99)),
(4L,("Helen",58)),
(5L,("John",55)),
(6L,("Tom",83)),
(7L,("Marry",94)),
(8L,("Cook",76)),
(9L,("Linda",84))
)
//边的数据类型ED:Int
val edgeArray = Array(
Edge(1L,2L,5),
Edge(1L,3L,9),
Edge(2L,4L,4),
Edge(3L,4L,6),
Edge(3L,6L,8),
Edge(3L,7L,4),
Edge(4L,5L,7),
Edge(4L,8L,6),
Edge(8L,3L,7),
Edge(8L,7L,2),
Edge(8L,9L,1)
)
//构造vertexRDD和edgeRDD
val vertexRDD:RDD[(Long,(String,Int))] = sc.parallelize(vertexArray)
val edgeRDD:RDD[Edge[Int]] = sc.parallelize(edgeArray)
//构造Graph[VD,ED]
val graph:Graph[(String,Int),Int] = Graph(vertexRDD, edgeRDD)
//*********************图的属性
//找出图中成绩大于60的顶点
println("Find the vertices with scores greater than 60 in the graph")
graph.vertices.filter{case (id,(name,grade)) => grade > 60}.collect.foreach{
case (id,(name,grade)) => println(s"$name $grade")
}
println
//边操作,找出图中边属性大于5的边
println("Find the edge of the graph whose edge attribute is greater than 5")
graph.edges.filter(e => e.attr > 5).collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
println
//triplets操作.((srcId,srcAttr),(dstID,dstAttr),attr)
//列出边属性>5的tripltes
println("Find the tripltes with edge attributes greater than 5")
for (triplet <- graph.triplets.filter(t => t.attr > 5).collect){
println(s"${triplet.srcAttr._1} ${triplet.dstAttr._1}")
}
println
//Degrees操作
//找出图中最大的出度、入度、度数
println("Find the maximum outDegrees, inDegrees, and Degrees in the graph")
def max(a:(VertexId,Int),b:(VertexId,Int)):(VertexId,Int) = {
if(a._2 > b._2) a else b
}
println("max of outDegrees" + graph.outDegrees.reduce(max) + " max of inDegrees" + graph.inDegrees.reduce(max) + " max of Degrees" + graph.degrees.reduce(max))
//********************转换操作
//顶点的转换操作,顶点成绩+10
println("Vertex conversion operation vertex scores added 10")
graph.mapVertices{ case (id, (name, age)) => (id, (name,age+10))}.vertices.collect.foreach(v => println(s"${v._2._1} is ${v._2._1}"))
println
//边的转换操作,边的属性
println("Edge conversion operation multiplying the attribute of the edge by 2")
graph.mapEdges(e => e.attr*2).edges.collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
println
//********************结构操作
//找出顶点成绩>60的子图
println("Find subgraphs with vertex scores greater than 60")
val subGraph = graph.subgraph(vpred = (id, vd) => vd._2 >= 60)
//找出子图所有顶点
println("Find all the vertices of the subgraph:")
subGraph.vertices.collect.foreach(v => println(s"${v._2._1} is ${v._2._2}"))
println
//找出子图所有边
println("Find all sides of the subgraph:")
subGraph.edges.collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
println
//********************结构操作
//连接操作
val inDegrees:VertexRDD[Int] = graph.inDegrees
case class User(name:String,grade:Int,inDeg:Int,outDeg:Int)
//创建一个新图,顶点VD的数据类型为User,并从graph做类型转换
val initialUserGraph:Graph[User,Int] = graph.mapVertices{case (id,(name,grade)) => User(name,grade,0,0)}
//initialUserGraph与inDegrees、outDegrees(RDD)进行连接
//并修改initialUserGraph中inDeg值、outDeg值
val userGraph = initialUserGraph.outerJoinVertices(initialUserGraph.inDegrees){
case(id, u, inDegOpt) => User(u.name, u.grade, inDegOpt.getOrElse(0), u.outDeg)}.outerJoinVertices(initialUserGraph.outDegrees){
case(id, u, outDegOpt) => User(u.name, u.grade, u.inDeg, outDegOpt.getOrElse(0))
}
//连接图的属性
userGraph.vertices.collect.foreach(v => println(s"${v._2.name} inDeg: ${v._2.inDeg} outDeg:${v._2.outDeg}"))
println
//找出出度和入度相同的顶点
println("Find the same vertex with the same degree of penetration")
userGraph.vertices.filter{
case (id,u) => u.inDeg == u.outDeg
}.collect.foreach{
case (id,property) => println(property.name)
}
println
sc.stop()
}
}
第二关
import org.apache.log4j.{Level,Logger}
import org.apache.spark.{SparkContext,SparkConf}
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
object GraphX_Test_2_stu{
def main(args:Array[String]): Unit ={
//屏蔽日志
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
//设置运行环境
val conf = new SparkConf().setAppName("SimpleGraph").setMaster("local")
val sc = new SparkContext(conf)
//设置顶点和边,注意顶点和边都是用元组定义的Array
//顶点的数据类型是VD:(String,Int)
val vertexArray = Array(
(1L,("Bob",89)),
(2L,("Sunny",70)),
(3L,("Tony",99)),
(4L,("Helen",58)),
(5L,("John",55)),
(6L,("Tom",83)),
(7L,("Marry",94)),
(8L,("Cook",76)),
(9L,("Linda",84))
)
//边的数据类型ED:Int
val edgeArray = Array(
Edge(1L,2L,5),
Edge(1L,3L,9),
Edge(2L,4L,4),
Edge(3L,4L,6),
Edge(3L,6L,8),
Edge(3L,7L,4),
Edge(4L,5L,7),
Edge(4L,8L,6),
Edge(8L,3L,7),
Edge(8L,7L,2),
Edge(8L,9L,1)
)
//构造vertexRDD和edgeRDD
val vertexRDD:RDD[(Long,(String,Int))] = sc.parallelize(vertexArray)
val edgeRDD:RDD[Edge[Int]] = sc.parallelize(edgeArray)
//构造Graph[VD,ED]
val graph:Graph[(String,Int),Int] = Graph(vertexRDD, edgeRDD)
//********************实用操作
//找出顶点1到各顶点的最短距离
println("Find the shortest distance from vertex 1 to each vertex")
val sourceId:VertexId = 1L //定义远点
val initialGraph = graph.mapVertices((id,_) => if (id == sourceId) 0.0 else Double.PositiveInfinity)
val sssp = initialGraph.pregel(Double.PositiveInfinity)(
(id,dist,newDist) => math.min(dist,newDist),
triplet => {//计算权重
if(triplet.srcAttr + triplet.attr < triplet.dstAttr){
Iterator((triplet.dstId,triplet.srcAttr + triplet.attr))
}else{
Iterator.empty
}
},
(a,b) => math.min(a,b)
)
println(sssp.vertices.collect.mkString("\n"))
println
def sendMsgFunc(edge:EdgeTriplet[Int, Int]) = {
if(edge.srcAttr <= 0){
if(edge.dstAttr <= 0){
// 如果双方都小于0,则不发送信息
Iterator.empty
}else{
// srcAttr小于0,dstAttr大于零,则将dstAttr-1后发送
Iterator((edge.srcId, edge.dstAttr - 1))
}
}else{
if(edge.dstAttr <= 0){
// srcAttr大于0,dstAttr<0,则将srcAttr-1后发送
Iterator((edge.dstId, edge.srcAttr - 1))
}else{
// 双方都大于零,则将属性-1后发送
val toSrc = Iterator((edge.srcId, edge.dstAttr - 1))
val toDst = Iterator((edge.dstId, edge.srcAttr - 1))
toDst ++ toSrc
}
}
}
val friends = Pregel(
graph.mapVertices((vid, value)=> if(vid == 1) 2 else -1),
// 发送初始值
-1,
// 指定阶数
2,
// 双方向发送
EdgeDirection.Either
)(
// 将值设为大的一方
vprog = (vid, attr, msg) => math.max(attr, msg),
//
sendMsgFunc,
//
(a, b) => math.max(a, b)
).subgraph(vpred = (vid, v) => v >= 0)
println("Confirm Vertices of friends ")
friends.vertices.collect.foreach(println(_))
sc.stop()
}
}