自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数

在标准的医院血液检测中,传统过程需要医生使用显微镜从患者的血液显微图像中手动分离白细胞。然后,这些分离出的白细胞通过自动白细胞分类器进行分类,以确定血液样本中不同类型白细胞的比例和数量,从而辅助疾病诊断。这种方法不仅耗时费力,而且由于图像质量和环境条件等因素,容易出现错误,从而可能导致后续分类不正确和误诊。现代白细胞检测方法在处理具有较少白细胞特征的图像和不同白细胞规模差异方面存在局限性,导致大多数情况下结果不尽如人意。

2024-06-22 10:13:18 789

原创 【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)

轻量级卷积神经网络(CNNs)专为移动设备上的应用而设计,具有更快的推理速度。卷积操作只能捕获窗口区域内的局部信息,这限制了性能的进一步提升。将自注意力引入到卷积中可以很好地捕获全局信息,但这将大大增加实际速度的负担。在本文中,我们提出了一种硬件友好的注意力机制(称为DFC注意力),然后为移动应用呈现了一个新的GhostNetV2架构。所提出的DFC注意力基于全连接层构建,不仅可以在常见硬件上快速执行,还能捕获长距离像素之间的依赖关系。

2024-06-22 09:14:57 554

原创 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md

我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近基于变换器的模型由于自## 摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,用于通过低成本操作生成更多的特征图。基于一组内在特征图,我们应用一系列低成本的线性变换来生成许多能够充分揭示内在特征信息的幽灵特征图。所提出的Ghost模块可以作为一个即插即用的组件来升级现有的卷积神经网络。

2024-06-22 09:14:15 725 1

原创 【YOLOv8改进】MSCA: 多尺度卷积注意力 (论文笔记+引入代码).md

我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近基于变换器的模型由于自注意力在编码空间信息方面的效率而在语义分割领域占据主导地位。在本文中,我们展示了卷积注意力是一种比变换器中的自注意力机制更高效和有效的编码上下文信息的方式。通过重新审视成功的分割模型所拥有的特征,我们发现了几个关键组件,这些组件导致了分割模型性能的提升。这激励我们设计了一种新颖的卷积注意力网络,该网络使用廉价的卷积操作。

2024-06-22 09:13:30 1265

原创 【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码)

卷积神经网络(CNNs)在许多计算机视觉任务中取得了巨大成功,例如图像分类和目标检测。然而,当面对图像分辨率低或对象较小的更加困难的任务时,它们的性能迅速下降。在本文中,我们指出这一问题根源于现有CNN架构中一个有缺陷但常见的设计,即使用了步长卷积和/或池化层,这导致了细粒度信息的丢失和较不有效的特征表示的学习。为此,我们提出了一种新的CNN构建块,名为SPD-Conv,用以替代每个步长卷积层和每个池化层(从而完全消除它们)。

2024-06-22 09:12:58 335 1

原创 【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md

在目标检测任务中,多尺度特征对于编码具有尺度变化的对象至关重要。采用经典的自顶向下和自底向上特征金字塔网络是提取多尺度特征的常用策略。然而,这些方法存在特征信息的丢失或降级问题,损害了非相邻层次之间融合效果。本文提出了一种渐近特征金字塔网络(AFPN),以支持非相邻层次之间的直接交互。AFPN通过融合两个相邻的低级特征启动,并渐进地将更高级别的特征纳入融合过程。通过这种方式,可以避免非相邻层次之间较大的语义差距。

2024-06-20 22:27:20 618

原创 【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)

在计算机视觉领域,模型效率的重要性日益增加。在本文中,我们系统地研究了用于目标检测的神经网络架构设计选择,并提出了几个关键优化以提高效率。首先,我们提出了一种加权双向特征金字塔网络(BiFPN),它允许轻松快速地进行多尺度特征融合;其次,我们提出了一种复合缩放方法,该方法统一缩放了所有主干网络、特征网络以及框/类别预测网络的分辨率、深度和宽度。基于这些优化和更好的主干网络,我们开发了一种新的目标检测器系列,称为EfficientDet,它在广泛的资源约束条件下始终比先前的技术实现了更好的效率。

2024-06-20 22:11:45 246 1

原创 【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码)

​边界框回归(BBR)在目标检测和实例分割中被广泛使用,这是目标定位中的一个重要步骤。然而,大多数现有的边界框回归损失函数在预测框与真实框的宽高比相同,但宽度和高度值完全不同时,无法被优化。为了解决上述问题,我们充分探索了水平矩形的几何特征,并提出了一种基于最小点距离的新颖边界框相似度比较度量MPDIoU,该度量包含了现有损失函数中考虑的所有相关因素,即重叠或非重叠区域、中心点距离以及宽度和高度的偏差,同时简化了计算过程。在此基础上,我们提出了一种基于MPDIoU的边界框回归损失函数,称为LMPDIoU。

2024-06-20 21:49:11 405 1

原创 【YOLOv8改进】Shape-IoU:考虑边框形状与尺度的指标(论文笔记+引入代码)

​ 作为检测器定位分支的重要组成,边框回归损失在目标检测任务中发挥巨大作用。现有的边框回归方法,通常考虑了GT框与预测框之间的几何关系,通过使用边框间的相对位置与相对形状等计算损失,而忽略了边框其自身的形状与尺度等固有属性对边框回归的影响。为了弥补现有研究的不足,本文提出聚焦边框自身形状与尺度的边框回归方法。首先我们对边框回归特性进行分析,得出边框自身形状因素与尺度因素会对回归结果产生影响。

2024-06-20 21:48:37 789 1

原创 【YOLOv8改进】Inner-IoU: 基于辅助边框的IoU损失(论文笔记+引入代码)

如上图所示,其中图1.a 为IoU-Deviation 曲线图,其水平轴与竖直轴分别表示deviation与IoU 值,三种不同颜色曲线对应不同尺度边框的IoU 变化曲线。我们假设实际边框尺寸为10,尺寸为8 和12 的边框作为其辅助边框。在这我们讨论回归过程中IoU 变化与边框尺寸的关系,分析边框回归问题的自身特性,解释本文所提出方法的合理性。• 分析边框回归过程与模式,基于边框回归问题自身特性,提出在模型训练过程中使用较小的辅助边框计算损失对高IoU 样本的回归有增益效果,低IoU样本则与之相反。

2024-06-20 21:47:51 218 1

原创 【YOLOv8改进】骨干网络: SwinTransformer (基于位移窗口的层次化视觉变换器)

本文提出了一种新型视觉,称为,它能够作为计算机视觉的通用骨干网络。将Transformer从语言领域适应到视觉领域时面临的挑战源于两个领域之间的差异,例如视觉实体的尺度变化大以及图像中像素的高分辨率相比文本中的单词。为了解决这些差异,我们提出了一种分层Transformer,其表示是通过移位窗口计算得出的。移位窗口方案通过将自注意力计算限制在非重叠的局部窗口内,同时也允许跨窗口连接,从而带来更高的效率。这种分层架构具有在不同尺度上建模的灵活性,并且其计算复杂度与图像大小呈线性关系。

2024-06-20 21:47:19 532

原创 【YOLOv8改进-论文笔记】RFAConv:感受野注意力卷积,创新空间注意力

空间注意力已被广泛用于提升卷积神经网络的性能。然而,它存在一定的局限性。在本文中,我们提出了一个关于空间注意力有效性的新视角,即空间注意力机制本质上是解决卷积核参数共享的问题。然而,由空间注意力生成的注意力图中包含的信息对于大尺寸卷积核来说并不充分。因此,我们提出了一种名为感受野注意力(Receptive-Field Attention,简称RFA)的新型注意力机制。

2024-06-20 21:44:36 591 1

原创 【YOLOv8改进-论文笔记】SCConv :即插即用的空间和通道重建卷积

卷积神经网络(CNNs)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。近期的研究要么压缩训练有素的大规模模型,要么探索设计精良的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余性来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv(空间和通道重构卷积),以减少冗余计算并促进代表性特征学习。所提出的SCConv由两个单元组成:空间重构单元(SRU)和通道重构单元(CRU)。

2024-06-20 21:44:06 368

原创 【YOLOv8改进】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务

精确分割拓扑管状结构,例如血管和道路,对各个领域至关重要,可确保下游任务的准确性和效率。然而,许多因素使任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。在这项工作中,我们注意到管状结构的特殊特征,并利用这一知识来引导我们的 DSCNet 在三个阶段同时增强感知:特征提取、特征融合和损失约束。首先,我们提出了一种动态蛇形卷积,通过自适应地聚焦于细长和曲折的局部结构,来准确捕捉管状结构的特征。

2024-06-20 21:43:31 845

原创 YOLOv8改进-论文笔记】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积

AKConv(可改变核卷积),主要用来解决传统卷积中固有的缺陷。传统卷积中,每个神经元只关注输入数据中一个固定大小的局部区域,而不能有效地捕捉到其他窗口的信息。这在处理全局上下文信息时可能会限制网络的性能。传统卷积网络中的卷积核大小通常是固定的(如 3x3, 5x5)。这种固定尺寸的核可能不适合捕捉所有尺度的特征。例如,较小的核可能适合捕捉细粒度的特征,而较大的核可能更适合捕捉更宽泛的特征。固定的卷积核尺寸和结构限制了网络在处理多尺度特征时的灵活性和有效性。

2024-06-20 21:42:45 460

原创 YOLOv8有效长涨点改进

入门必会知识点标题链接写给初学者的YOLO目标检测 概述https://blog.csdn.net/shangyanaf/article/details/130399439YOLOv8 来了,快速上手实操https://blog.csdn.net/shangyanaf/article/details/130539468目标检测算法以及常用库概述https://blog.csdn.net/shangyanaf/article/details/132988174万字

2024-06-08 20:46:41 879

原创 【持续更新】华为 OD 机试 C卷抽中题库清单(全真题库)含考点说明以及在线OJ

2023年11月份,华为官方已经将 华为OD机考:OD统一考试(A卷 / B卷)切换到 OD统一考试(C卷)和 OD统一考试(D卷)。根据考友反馈:目前抽到的试卷为B卷或C卷/D卷,其中C卷居多 ,按照之前的经验C卷D卷部分考题会复用A卷/B卷题,博主正积极从考过的同学收集C卷和D卷真题,可以查看下面的真题目录。

2023-12-07 09:55:47 927

原创 华为OD机考机试 真题目录(C卷 + D卷 + B卷 + A卷) + 考点说明

OD,全称(Outsourcing Dispacth)模式,目前华为和德科联合招聘的简称。华为社招基本都是OD招聘,17级以下都是OD模式(13-17)。

2023-11-20 10:39:23 237

原创 2023最新华为OD机试,独家整理总结上岸技巧,答读者问华为OD 华为OD机试备考攻略

华为OD员工并非华为公司员工,而是由外包公司德科派驻到华为工作。德科是OD员工的雇主,负责签订合同和管理劳务关系,并发放工资和福利。华为推行同工同酬,所以OD的薪资与正式员工差不多。TIPS:每年都有OD员工转为正式员工。华为OD的入职考核相当严格,特别是在信息安全和日常考核方面,行业内也有很多评论。试用期转正相对容易,主要看个人是否适应公司文化和业务能力是否达标。虽然公司提倡狼性文化,但试用期不通过的情况比较少。入职后还会进行背景调查,应该实事求是,不要犯傻。

2023-09-18 16:17:59 472

原创 2023 华为OD机试备考攻略 以及题库目录分值说明 考点说明 (A卷+ B卷)

OD,全称(Outsourcing Dispacth)模式,目前华为和德科联合招聘的简称。华为社招基本都是OD招聘,17级以下都是OD模式(13-17)。

2023-09-18 16:17:16 154

原创 2023下半年最新华为OD 机试 与 面试 指南,独家总结上岸技巧,答读者问!必看!【万字长文,建议收藏】

过去,华为的"项目外包"主要针对非核心业务岗位,由于人员交付能力有限且稳定性不高,效果并不理想。为了解决更为核心的业务问题,华为于2019年开始探索并实行新的研发"人力外包"模式。这种模式按准雇员标准进行招聘,由业务部门负责培养和管理,对于绩效优秀且能力突出的人才提供转正式员工通道。

2023-09-18 16:16:41 1048

原创 【华为OD统一考试B卷 】 题库目录-分值说明/在线刷题(最新版本-0901)

亲爱的华为OD候选人们,你们期待已久的刷题平台终于来了!全新的华为OD机试在线刷题平台已经上线,为你们提供了一个全新的学习和提升华为OD机考编程技能的机会!无论你是初学者还是有经验的程序员,相信这个平台将成为你们上岸华为OD的终极秘籍!2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。全新华为OD在线刷题平台登场!解锁上岸华为OD的终极秘籍!

2023-09-18 16:16:06 36

原创 【华为OD统一考试B卷 】 题库目录-分值说明/在线刷题(最新版本-0901)

亲爱的华为OD候选人们,你们期待已久的刷题平台终于来了!全新的华为OD机试在线刷题平台已经上线,为你们提供了一个全新的学习和提升华为OD机考编程技能的机会!无论你是初学者还是有经验的程序员,相信这个平台将成为你们上岸华为OD的终极秘籍!2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。全新华为OD在线刷题平台登场!解锁上岸华为OD的终极秘籍!

2023-09-18 16:08:39 40

原创 【华为OD统一考试B卷 | 200分】树状结构查询( C++ Java JavaScript python)

2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。但是仍有概率抽到A卷。输入一个单词前缀和一个字典,输出包含该前缀的单词。所有包含该前缀的单词,多个单词换行输出。单词前缀+字典长度+字典。字典是一个有序单词数组。

2023-09-03 22:41:13 25

原创 【华为OD统一考试B卷 | 100分】数大雁( C++ Java JavaScript python)

2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。但是仍有概率抽到A卷。输入一个单词前缀和一个字典,输出包含该前缀的单词。所有包含该前缀的单词,多个单词换行输出。单词前缀+字典长度+字典。字典是一个有序单词数组。

2023-09-03 22:40:38 31

原创 【华为OD统一考试B卷 | 100分】 查字典( C++ Java JavaScript python)

2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。但是仍有概率抽到A卷。输入一个单词前缀和一个字典,输出包含该前缀的单词。所有包含该前缀的单词,多个单词换行输出。单词前缀+字典长度+字典。字典是一个有序单词数组。

2023-09-03 22:40:05 40

原创 【华为OD统一考试B卷 | 100分】 跳房子I( C++ Java JavaScript python)

假设房子的总格数是count,小红每回合可能连续跳的步教都放在数组steps中,请问数组中是否有一种步数的组合,可以让小红两个回合跳到量后一格?2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。请注意:根据反馈,目前大部分收到的都是B卷。第二行输入为每回合可能连续跳的步数,它是int整数数组类型。跳房子,也叫跳飞机,是一种世界性的儿童游戏。跳房子的过程中,可以向前跳,也可以向后跳。如果有,请输出索引和最小的步数组合。

2023-09-03 22:39:28 31

原创 【华为OD统一考试B卷 | 200分】跳格子2( C++ Java JavaScript python)

小明和朋友玩跳格子游戏,有 n 个连续格子组成的圆圈,每个格子有不同的分数,小朋友可以选择以任意格子起跳,但是不能跳连续的格子,不能回头跳,也不能超过一圈;2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。给定一个代表每个格子得分的非负整数数组,计算能够得到的最高分数。给定一个数例,第一个格子和最后一个格子首尾相连,如: 2 3 2。

2023-09-03 22:38:50 48

原创 【华为OD统一考试B卷 | 100分】荒岛求生(C++ Java JavaScript Python)

2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。若两个人相遇,则进行决斗,战斗力强的能够活下来,并损失掉与对方相同的战斗力;你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。一个荒岛上有若干人,岛上只有一条路通往岛屿两端的港口,大家需要逃往两端的港口才可逃生。正负表示逃生方向(正表示向右逃生,负表示向左逃生),绝对值表示战斗力,越左边的。假定每个人移动的速度一样,且只可选择向左或向右逃生。

2023-09-03 22:37:40 58

原创 【华为OD统一考试B卷 | 200分】人气最高的店铺(C++ Java JavaScript Python)

请计算1号店铺需要最少发放多少元购物补贴才能成为人气最高店铺(即获得的票数要大于其他店铺),如果1号店铺本身就是票数最高店铺,返回0。2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。活动共有n位市民参与,每位市民只能投一票,但1号店铺如果给该市民发放 q 元的购物补贴,该市民会改为投1号店铺。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。某购物城有m个商铺,现决定举办一场活动选出人气最高店铺。

2023-09-03 22:37:08 40

原创 【华为OD统一考试B卷 | 100分】符合要求的元组的个数(C++ Java JavaScript Python)

2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。输入为N行员工信息,表示部门报名参加选拔的候选人信息,每行有两个数字,使用空格分隔,表示员工的身高、体重信息。要求输出一个10行的已经排序的参赛员工信息数据,每行有两个数字,使用空格分隔,表示员工的身高、体重信息如。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。输入为一个数组,记录了部门人员的身高、体重信息,如[身高,体重]的方式放置;

2023-09-03 22:36:28 28

原创 【华为OD统一考试B卷 | 100分】拔河比赛(C++ Java JavaScript Python)

2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。输入为N行员工信息,表示部门报名参加选拔的候选人信息,每行有两个数字,使用空格分隔,表示员工的身高、体重信息。要求输出一个10行的已经排序的参赛员工信息数据,每行有两个数字,使用空格分隔,表示员工的身高、体重信息如。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。输入为一个数组,记录了部门人员的身高、体重信息,如[身高,体重]的方式放置;

2023-09-03 22:35:55 24

原创 【华为OD统一考试B卷 | 200分】数字游戏(C++ Java JavaScript Python)

2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。请注意:根据反馈,目前大部分收到的都是B卷。需要小明判断,后n张牌中,是否存在连续的若干张牌,其和可以整除小明手中牌上的数字。对每组输入,如果存在满足条件的连续若干张牌,则输出1;输入数据有多组,每组输入数据有两行,输入到文件结尾结束。第二行有n个数,代表后续发的n张牌上的数字,以空格隔开。第一张给小明,后n张按照发牌顺序排成连续的一行。系统发1+n张牌,每张牌上有一个整数。

2023-09-03 22:35:04 32

原创 【华为OD统一考试B卷 】 题库目录-分值说明/在线刷题

亲爱的华为OD候选人们,你们期待已久的刷题平台终于来了!全新的华为OD机试在线刷题平台已经上线,为你们提供了一个全新的学习和提升华为OD机考编程技能的机会!无论你是初学者还是有经验的程序员,相信这个平台将成为你们上岸华为OD的终极秘籍!2023年5月份,华为官方已经将的 2022/0223Q(1/2/3/4)统一修改为OD统一考试(A卷)和OD统一考试(B卷)。你收到的链接上面会标注A卷还是B卷。请注意:根据反馈,目前大部分收到的都是B卷。全新华为OD在线刷题平台登场!解锁上岸华为OD的终极秘籍!

2023-09-03 22:34:25 36

原创 华为OD机试题库 2023 2022 备忘录

【华为OD机试 2023】 开放日活动、取出尽量少的球 (C++ Java JavaScript Python)【 华为OD机试 2023】 最快到达医院的方法(C++ Java JavaScript Python)【 华为OD机试 2023】 微服务的集成测试(C++ Java JavaScript Python)【华为OD机试 2023】 网上商城优惠活动(C++ Java Javascript Python)

2023-03-05 21:32:48 266 1

原创 【无标题】26-时尚精品服饰网店响应式网页模板

扫码或搜索添加文末公众号「搞前端的半夏」:🍗 回复 ”网站模板“,免费送网站模板!你还在未HTML网页设计作业头大吗?你还在为自学前端,没有项目练手苦恼吗?你还在为外包项目没有模板难受吗?关注专栏《》,自用,作业,外包。你想要的全都有,持续更新,励志更新1000套模板!!本专栏为纯前端网站模板,提供海量精美免费网站模板、企业网站模板、html模板网站、公司网站模板、手机网站模板、自适应网站模板等免下载使用,覆盖全行业,0门槛建网站。一站式解决建站需求,功能强大,seo优化简单,收录快。

2023-01-12 22:28:13 410

原创 用HTML CSS 实现简约风格装潢公司设计响应式网页模板

N++网站模板 源码链接:https://pan.baidu.com/s/1ZoEYDLVwy6-kXQbLOpFIdw?pwd=3zuu模板网站可以在激烈竞争的市场中占用一席之地,并被人青睐,是有优势和价值的。一提到模板站,立即就会想到自助网站等,那么网站制作模板的好处是什么呢?实际上模板的好处在于,可以减少网站的开发周期和费用,丰富的样版为各种不同类型的企业提供了选择。制作网站模板的企业很多,然而所选用的方法也都不相同,技术层次的高低也决定价值。代码越少越有助于网站的维护,div有着很大的优势,其将

2022-05-11 23:53:07 472 1

原创 什么是箭头函数?

箭头函数允许我们用更短的语法定义函数。箭头函数可用于替代传统函数function() {}。语法允许写的函数,在2号取为参数a和b,然后返回的总和。作为常规功能:function sum(a, b) { return a + b}现在,作为箭头函数:const sum = (a, b) => a + b您可以清楚地看到语法缩短了多少。使用箭头函数时,参数位于一对括号中的开头。然后是 a =>,它声明了一个箭头函数。之后,您将输入{}您希望运行的任何代码。但是,在返回值

2021-12-04 11:34:21 36712 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除