丙音
码龄3年
关注
提问 私信
  • 博客:64,064
    社区:4,602
    68,666
    总访问量
  • 44
    原创
  • 64,134
    排名
  • 259
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2021-10-24
博客简介:

m0_63430863的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,444
    当月
    24
个人成就
  • 获得338次点赞
  • 内容获得14次评论
  • 获得478次收藏
  • 代码片获得243次分享
创作历程
  • 22篇
    2024年
  • 20篇
    2023年
  • 1篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • javascript
    2篇
兴趣领域 设置
  • 前端
    cssreact.jses6webpack前端框架
  • 后端
    node.js
  • 微软技术
    typescript
  • 学习和成长
    面试
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【YOLOv8改进 - 卷积Conv】SPConv:去除特征图中的冗余,大幅减少参数数量 | 小目标

【YOLOv8改进 - 卷积Conv】SPConv:去除特征图中的冗余,大幅减少参数数量 | 小目标
原创
发布博客 2024.07.24 ·
1040 阅读 ·
10 点赞 ·
0 评论 ·
11 收藏

【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力

【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力
原创
发布博客 2024.07.24 ·
907 阅读 ·
29 点赞 ·
0 评论 ·
28 收藏

【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络

【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
原创
发布博客 2024.07.24 ·
677 阅读 ·
7 点赞 ·
0 评论 ·
18 收藏

【YOLOv8改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示

【YOLOv8改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示
原创
发布博客 2024.07.24 ·
1138 阅读 ·
27 点赞 ·
0 评论 ·
18 收藏

【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性

【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
原创
发布博客 2024.07.24 ·
1083 阅读 ·
18 点赞 ·
0 评论 ·
29 收藏

【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点

【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
原创
发布博客 2024.07.24 ·
1547 阅读 ·
15 点赞 ·
0 评论 ·
35 收藏

【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数

在标准的医院血液检测中,传统过程需要医生使用显微镜从患者的血液显微图像中手动分离白细胞。然后,这些分离出的白细胞通过自动白细胞分类器进行分类,以确定血液样本中不同类型白细胞的比例和数量,从而辅助疾病诊断。这种方法不仅耗时费力,而且由于图像质量和环境条件等因素,容易出现错误,从而可能导致后续分类不正确和误诊。现代白细胞检测方法在处理具有较少白细胞特征的图像和不同白细胞规模差异方面存在局限性,导致大多数情况下结果不尽如人意。
原创
发布博客 2024.06.22 ·
1641 阅读 ·
14 点赞 ·
0 评论 ·
22 收藏

【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)

轻量级卷积神经网络(CNNs)专为移动设备上的应用而设计,具有更快的推理速度。卷积操作只能捕获窗口区域内的局部信息,这限制了性能的进一步提升。将自注意力引入到卷积中可以很好地捕获全局信息,但这将大大增加实际速度的负担。在本文中,我们提出了一种硬件友好的注意力机制(称为DFC注意力),然后为移动应用呈现了一个新的GhostNetV2架构。所提出的DFC注意力基于全连接层构建,不仅可以在常见硬件上快速执行,还能捕获长距离像素之间的依赖关系。
原创
发布博客 2024.06.22 ·
995 阅读 ·
18 点赞 ·
0 评论 ·
22 收藏

【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md

我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近基于变换器的模型由于自## 摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,用于通过低成本操作生成更多的特征图。基于一组内在特征图,我们应用一系列低成本的线性变换来生成许多能够充分揭示内在特征信息的幽灵特征图。所提出的Ghost模块可以作为一个即插即用的组件来升级现有的卷积神经网络。
原创
发布博客 2024.06.22 ·
1073 阅读 ·
25 点赞 ·
1 评论 ·
30 收藏

【YOLOv8改进】MSCA: 多尺度卷积注意力 (论文笔记+引入代码).md

我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近基于变换器的模型由于自注意力在编码空间信息方面的效率而在语义分割领域占据主导地位。在本文中,我们展示了卷积注意力是一种比变换器中的自注意力机制更高效和有效的编码上下文信息的方式。通过重新审视成功的分割模型所拥有的特征,我们发现了几个关键组件,这些组件导致了分割模型性能的提升。这激励我们设计了一种新颖的卷积注意力网络,该网络使用廉价的卷积操作。
原创
发布博客 2024.06.22 ·
2653 阅读 ·
20 点赞 ·
2 评论 ·
22 收藏

【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码)

卷积神经网络(CNNs)在许多计算机视觉任务中取得了巨大成功,例如图像分类和目标检测。然而,当面对图像分辨率低或对象较小的更加困难的任务时,它们的性能迅速下降。在本文中,我们指出这一问题根源于现有CNN架构中一个有缺陷但常见的设计,即使用了步长卷积和/或池化层,这导致了细粒度信息的丢失和较不有效的特征表示的学习。为此,我们提出了一种新的CNN构建块,名为SPD-Conv,用以替代每个步长卷积层和每个池化层(从而完全消除它们)。
原创
发布博客 2024.06.22 ·
644 阅读 ·
4 点赞 ·
1 评论 ·
8 收藏

【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md

在目标检测任务中,多尺度特征对于编码具有尺度变化的对象至关重要。采用经典的自顶向下和自底向上特征金字塔网络是提取多尺度特征的常用策略。然而,这些方法存在特征信息的丢失或降级问题,损害了非相邻层次之间融合效果。本文提出了一种渐近特征金字塔网络(AFPN),以支持非相邻层次之间的直接交互。AFPN通过融合两个相邻的低级特征启动,并渐进地将更高级别的特征纳入融合过程。通过这种方式,可以避免非相邻层次之间较大的语义差距。
原创
发布博客 2024.06.20 ·
1065 阅读 ·
9 点赞 ·
0 评论 ·
14 收藏

【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)

在计算机视觉领域,模型效率的重要性日益增加。在本文中,我们系统地研究了用于目标检测的神经网络架构设计选择,并提出了几个关键优化以提高效率。首先,我们提出了一种加权双向特征金字塔网络(BiFPN),它允许轻松快速地进行多尺度特征融合;其次,我们提出了一种复合缩放方法,该方法统一缩放了所有主干网络、特征网络以及框/类别预测网络的分辨率、深度和宽度。基于这些优化和更好的主干网络,我们开发了一种新的目标检测器系列,称为EfficientDet,它在广泛的资源约束条件下始终比先前的技术实现了更好的效率。
原创
发布博客 2024.06.20 ·
408 阅读 ·
3 点赞 ·
1 评论 ·
5 收藏

【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码)

​边界框回归(BBR)在目标检测和实例分割中被广泛使用,这是目标定位中的一个重要步骤。然而,大多数现有的边界框回归损失函数在预测框与真实框的宽高比相同,但宽度和高度值完全不同时,无法被优化。为了解决上述问题,我们充分探索了水平矩形的几何特征,并提出了一种基于最小点距离的新颖边界框相似度比较度量MPDIoU,该度量包含了现有损失函数中考虑的所有相关因素,即重叠或非重叠区域、中心点距离以及宽度和高度的偏差,同时简化了计算过程。在此基础上,我们提出了一种基于MPDIoU的边界框回归损失函数,称为LMPDIoU。
原创
发布博客 2024.06.20 ·
635 阅读 ·
5 点赞 ·
1 评论 ·
5 收藏

【YOLOv8改进】Shape-IoU:考虑边框形状与尺度的指标(论文笔记+引入代码)

​ 作为检测器定位分支的重要组成,边框回归损失在目标检测任务中发挥巨大作用。现有的边框回归方法,通常考虑了GT框与预测框之间的几何关系,通过使用边框间的相对位置与相对形状等计算损失,而忽略了边框其自身的形状与尺度等固有属性对边框回归的影响。为了弥补现有研究的不足,本文提出聚焦边框自身形状与尺度的边框回归方法。首先我们对边框回归特性进行分析,得出边框自身形状因素与尺度因素会对回归结果产生影响。
原创
发布博客 2024.06.20 ·
1032 阅读 ·
9 点赞 ·
1 评论 ·
17 收藏

【YOLOv8改进】Inner-IoU: 基于辅助边框的IoU损失(论文笔记+引入代码)

如上图所示,其中图1.a 为IoU-Deviation 曲线图,其水平轴与竖直轴分别表示deviation与IoU 值,三种不同颜色曲线对应不同尺度边框的IoU 变化曲线。我们假设实际边框尺寸为10,尺寸为8 和12 的边框作为其辅助边框。在这我们讨论回归过程中IoU 变化与边框尺寸的关系,分析边框回归问题的自身特性,解释本文所提出方法的合理性。• 分析边框回归过程与模式,基于边框回归问题自身特性,提出在模型训练过程中使用较小的辅助边框计算损失对高IoU 样本的回归有增益效果,低IoU样本则与之相反。
原创
发布博客 2024.06.20 ·
332 阅读 ·
5 点赞 ·
1 评论 ·
3 收藏

【YOLOv8改进】骨干网络: SwinTransformer (基于位移窗口的层次化视觉变换器)

本文提出了一种新型视觉,称为,它能够作为计算机视觉的通用骨干网络。将Transformer从语言领域适应到视觉领域时面临的挑战源于两个领域之间的差异,例如视觉实体的尺度变化大以及图像中像素的高分辨率相比文本中的单词。为了解决这些差异,我们提出了一种分层Transformer,其表示是通过移位窗口计算得出的。移位窗口方案通过将自注意力计算限制在非重叠的局部窗口内,同时也允许跨窗口连接,从而带来更高的效率。这种分层架构具有在不同尺度上建模的灵活性,并且其计算复杂度与图像大小呈线性关系。
原创
发布博客 2024.06.20 ·
1028 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

【YOLOv8改进-论文笔记】RFAConv:感受野注意力卷积,创新空间注意力

空间注意力已被广泛用于提升卷积神经网络的性能。然而,它存在一定的局限性。在本文中,我们提出了一个关于空间注意力有效性的新视角,即空间注意力机制本质上是解决卷积核参数共享的问题。然而,由空间注意力生成的注意力图中包含的信息对于大尺寸卷积核来说并不充分。因此,我们提出了一种名为感受野注意力(Receptive-Field Attention,简称RFA)的新型注意力机制。
原创
发布博客 2024.06.20 ·
840 阅读 ·
20 点赞 ·
1 评论 ·
10 收藏

【YOLOv8改进-论文笔记】SCConv :即插即用的空间和通道重建卷积

卷积神经网络(CNNs)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。近期的研究要么压缩训练有素的大规模模型,要么探索设计精良的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余性来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv(空间和通道重构卷积),以减少冗余计算并促进代表性特征学习。所提出的SCConv由两个单元组成:空间重构单元(SRU)和通道重构单元(CRU)。
原创
发布博客 2024.06.20 ·
538 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

【YOLOv8改进】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务

精确分割拓扑管状结构,例如血管和道路,对各个领域至关重要,可确保下游任务的准确性和效率。然而,许多因素使任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。在这项工作中,我们注意到管状结构的特殊特征,并利用这一知识来引导我们的 DSCNet 在三个阶段同时增强感知:特征提取、特征融合和损失约束。首先,我们提出了一种动态蛇形卷积,通过自适应地聚焦于细长和曲折的局部结构,来准确捕捉管状结构的特征。
原创
发布博客 2024.06.20 ·
943 阅读 ·
11 点赞 ·
0 评论 ·
9 收藏
加载更多