YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO目标检测创新改进与实战案例
摘要
卷积神经网络(CNNs)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。近期的研究要么压缩训练有素的大规模模型,要么探索设计精良的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余性来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv(空间和通道重构卷积),以减少冗余计算并促进代表性特征学习。所提出的SCConv由两个单元组成:空间重构单元(SRU)和通道重构单元(CRU)。SRU使用分离-重构方法来抑制空间冗余,而CRU使用分割-变换-融合策略来减少通道冗余。此外,SCConv是一个即插即用的架构单元,可以直接用于替换各种卷积神经网络中的标准卷积。实验结果表明,嵌入SCConv的模型能够通过减少冗余特征,在显著降低复杂性和计算成本的同时,达到更好的性能。
创新点
-
空间重构单元(SRU)
-
通道重构单元(CRU)
如下图,SCConv 由两个单元组成,即空间重构单元 (SRU) 和信道重构单元 (CRU) ,两个单元按顺序排列。输入的特征 X 先经过 空间重构单元 ,得到空间细化的特征Xw 。再经过 通道重构单元 ,得到通道提炼的特征 Y 作为输出。SCConv 模块利用了特征之间的空间冗余和信道冗余,模块可以无缝集成到任何 CNN 框架中,减少特征之间的冗余,提高 CNN 特征的代表性。
yoloV8引入SCConv
新建ultralytics/nn/modules/conv/ScConv.py
import torch
import torch.nn.functional as F
import torch.nn as nn
def autopad(k, p=None, d=1): # kernel, padding, dilation
# Pad to 'same' shape outputs
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else