【YOLOv8改进-论文笔记】SCConv :即插即用的空间和通道重建卷积

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO目标检测创新改进与实战案例

摘要

卷积神经网络(CNNs)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。近期的研究要么压缩训练有素的大规模模型,要么探索设计精良的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余性来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv(空间和通道重构卷积),以减少冗余计算并促进代表性特征学习。所提出的SCConv由两个单元组成:空间重构单元(SRU)和通道重构单元(CRU)。SRU使用分离-重构方法来抑制空间冗余,而CRU使用分割-变换-融合策略来减少通道冗余。此外,SCConv是一个即插即用的架构单元,可以直接用于替换各种卷积神经网络中的标准卷积。实验结果表明,嵌入SCConv的模型能够通过减少冗余特征,在显著降低复杂性和计算成本的同时,达到更好的性能。

创新点

  1. 空间重构单元(SRU)

  2. 通道重构单元(CRU)

如下图,SCConv 由两个单元组成,即空间重构单元 (SRU) 和信道重构单元 (CRU) ,两个单元按顺序排列。输入的特征 X 先经过 空间重构单元 ,得到空间细化的特征Xw 。再经过 通道重构单元 ,得到通道提炼的特征 Y 作为输出。SCConv 模块利用了特征之间的空间冗余和信道冗余,模块可以无缝集成到任何 CNN 框架中,减少特征之间的冗余,提高 CNN 特征的代表性。

yoloV8引入SCConv

新建ultralytics/nn/modules/conv/ScConv.py

import torch
import torch.nn.functional as F
import torch.nn as nn
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else
### YOLOv8 使用 LDConv 的改进方法及其实现 #### 方法概述 LDConv(Linear Deformable Convolution)作为一种新型的卷积操作,能够替代传统卷积层以提升模型性能[^1]。其核心优势在于能够在保持较低计算开销的情况下增强特征提取能力。对于 YOLOv8 而言,可以通过将原有的标准卷积层替换为 LDConv 层来实现这一改进。 具体来说,YOLOv8 中的传统卷积操作被 LDConv 替代后,不仅提升了检测精度,还优化了模型效率灵活性[^3]。这种即插即用的设计使得开发者无需大幅修改网络结构即可获得性能增益。 --- #### 实现细节 以下是基于 Python PyTorch 的代码示例,展示如何在 YOLOv8 中应用 LDConv: ```python import torch.nn as nn class LDConv(nn.Module): """ Linear Deformable Convolution (LDConv) implementation. This module replaces the standard convolution with a deformable variant, enhancing feature extraction while maintaining low computational cost. """ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False): super(LDConv, self).__init__() self.offset_conv = nn.Conv2d(in_channels, 2 * kernel_size ** 2, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) self.deform_conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) def forward(self, x): offset = self.offset_conv(x) output = self.deform_conv(x, offset) return output ``` 上述 `LDConv` 类实现了线性可变形卷积的核心逻辑。它通过两个主要部分完成功能: 1. **Offset 计算**:利用一个小型卷积核生成偏移量。 2. **Deformable 卷积**:根据生成的偏移量调整采样位置并执行卷积运算。 为了将 LDConv 集成到 YOLOv8 中,需定位原始架构中的卷积层,并将其替换为此自定义模块。例如,在 Backbone 或 Neck 部分中找到如下形式的标准卷积层: ```python conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) ``` 将其替换为 LDConv 对应实例化版本: ```python ldconv_layer = LDConv(in_channels, out_channels, kernel_size=3, stride=1, padding=1) ``` --- #### 性能评估与调优建议 引入 LDConv 后,YOLOv8 的性能通常会在以下几个方面得到改善: - 提高目标边界框预测准确性。 - 增强小物体检测效果。 - 减少过拟合风险,尤其是在数据集较小的情况下[^2]。 然而,需要注意的是,尽管 LDConv 设计上力求降低额外计算负担,但在实际部署过程中仍可能因硬件支持程度不同而影响推理速度。因此,建议针对特定应用场景测试多种配置组合,寻找最佳平衡点。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值