可以形成最大正方形的矩形数目

可以形成最大正方形的矩形数目
给你一个数组 rectangles ,其中 rectangles[i] = [li, wi] 表示第 i 个矩形的长度为 li
宽度为 wi
如果存在 k 同时满足 k <= li k <= wi ,就可以将第 i 个矩形切成边长为 k 的正方形。例
如,矩形 [4,6] 可以切成边长最大为 4 的正方形。
maxLen 为可以从矩形数组 rectangles 切分得到的 最大正方形 的边长。
请你统计有多少个矩形能够切出边长为 maxLen 的正方形,并返回矩形 数目

#include <iostream>
using namespace std;
void shuru(int shuzu[5][2])
    {
       
        cout << "请输入您要创立的5个数组数" << endl;        
        for (int i = 0; i < 5; i++)
        {
            int b = i + 1;
            cout<<"请输入第" << b <<"个数组";
            cin >> shuzu[i][0] >> shuzu[i][1];
        }       
    }
int check(int shuzu[5][2], int coutnum) {
    cout << "请输入你要确定的最小边长";
    int len;
    cin >> len;
    int max[5];
    for (int i = 0; i < 5; i++)
    {
        if (shuzu[i][0] <= shuzu[i][1])
        {
            max[i] = shuzu[i][0];
        }
        else {
            max[i] = shuzu[i][1];
        }
    }
    for (int i = 0; i < 5; i++) {
        if (max[i] >= len) {
            coutnum += 1;
        }
    }
    return coutnum;

}
 void main() {
    
    int shuzu[5][2];
    shuru(shuzu);    
    int coutnum=0 ;
    cout<<check(shuzu,coutnum);
}

### 关于矩形正方形的算法实现及应用 #### 矩形切割成正方形的核心逻辑 当处理矩形并将其逐步分割为尽可能大的正方形时,可以采用一种基于辗转相除法的思想来解决问题。具体来说,每次从当前矩形中取出一个最大可能的正方形后,剩余部分仍是一个较小的矩形。这一过程不断重复,直至整个矩形被完全分解为正方形。 对于给定尺寸 $a \times b$ 的矩形(假设 $a \geq b$),可以通过以下方法计算最终能够获得的正方形总数: 1. **初始化计数器**:设置变量 `count` 来记录总的正方形数目。 2. **循环操作**:只要较大的边长大于零,则执行如下步骤: - 将较大边减去较小边的长度,并增加相应的正方形数量。 - 更新矩形的两个维度以便继续下一次迭代。 3. **终止条件**:当其中一个维度变为零时停止循环。 这种方法的时间复杂度接近 O(log(min(a, b))),因为每一步都会显著减少至少一条边的大小[^1]。 以下是该算法的一个 C++ 实现版本: ```cpp #include <iostream> using namespace std; int main() { int a = 2019; int b = 324; int count = 0; while (b != 0){ count += a / b; // 计算能切下的相同大小的最大正方形的数量 int temp = a % b; // 剩余的部分作为新的短边 a = b; // 长边更新为原来的短边 b = temp; // 新的短边由上一轮的模运算得出 } cout << count << endl; // 输出总共可得的正方形个数 return 0; } ``` 上述程序通过模拟实际切割流程实现了精确求解目标问题的功能[^4]。 #### 统计矩形内的所有正方形数量 另一个常见的问题是统计某个固定大小矩形内部所能包含的不同尺度的小正方形总共有多少个。如果已知原始矩形宽度为 n ,高度为 m (不妨设 n ≥ m ),那么满足特定约束条件下任意位置处存在的独立小正方形数目可通过累加公式快速得到: $$ sum=\sum_{i=1}^{min(n,m)}(n-i+1)(m-i+1) $$ 此表达式的含义在于逐层枚举每一个潜在候选区域范围内的合法子集成员贡献值之和[^3]。 下面给出一段 Python 脚本来完成这项任务: ```python def total_squares(n, m): smaller_dim = min(n, m) square_count = 0 for i in range(1, smaller_dim + 1): square_count += (n - i + 1) * (m - i + 1) return square_count print(total_squares(5, 4)) # Example usage with dimensions 5x4. ``` 这段脚本利用双重嵌套结构遍历所有可能性从而达到预期效果. #### 复杂场景扩展——多边形裁剪技术简介 除了单纯讨论矩形正方形转换之外,在更广泛的几何领域还存在诸如如何用标准形状比如长条状物体去修剪不规则轮廓对象之类的话题探讨价值所在之处。这类情况往往涉及到更为复杂的数学建模以及计算机图形学原理的应用实践当中去了[^2].
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值