题目描述
数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一 部分的数列,只记得其中 NN 个整数。
现在给出这 NN 个整数,小明想知道包含这 NN 个整数的最短的等差数列有几项?
输入描述
输入的第一行包含一个整数 NN。
第二行包含 NN 个整数 A_1,A_2,··· ,A_NA1,A2,⋅⋅⋅,AN。(注意 A_1A1 ∼ A_NAN 并不一定是按等差数列中的顺序给出)
其中,2 \leq N \leq 10^5,0 \leq A_i \leq 10^92≤N≤105,0≤Ai≤109。
输出描述
输出一个整数表示答案。
输入输出样例
示例
输入
5
2 6 4 10 20
输出
10
样例说明: 包含 2、6、4、10、20 的最短的等差数列是 2、4、6、8、10、12、14、16、 18、20。
运行限制
- 最大运行时间:1s
- 最大运行内存: 256M
-
n=int(input()) a=list(map(int,input().split())) a.sort() d=0 def gcd(a,b): if b==0:return a else:return gcd(b,a%b) for i in range(1,n): d=gcd(d,a[i]-a[i-1]) if d==0 : print(n) else:print((a[n-1]-a[0])//d+1)
根据等差数列公式可得,我们只需要找出最大的d就可以求出最短的等差数列,也就是求出最大的最大公约数