R2-1
无向图G=<V, E>中顶点间的连通关系是V上的 ( )关系。
A.恒等关系
B.偏序关系
C.相容关系
D.等价关系
R2-2
网球锦标赛共有7名选手闯入总决赛。比赛采用单淘汰制,需要多少场比赛才能决出冠军。
A.4
B.6
C.7
D.5
R2-3
在含有t片树叶的完全二叉树中有( ) 条边。
A.2t
B.2t-2
C.2t-1
D.t
R2-4
以下哪个图不是欧拉图?
A.B
B.C
C.A
D.D
R2-5
无向完全图K 5要得到一棵生成树,需要删除( )条边。
A.6
B.5
C.4
D.7
R2-6
以下说法正确的是?
A.非负整数序列 (3, 3, 3, 1) 不是图的度数序列
B.任意有向图中,所有顶点的入度之和与所有顶点出度之和不相等
C.图同构是一种等价关系。
D.非负整数序列 (5, 4, 3, 2, 2) 是简单图的度数序列
R2-7
用克鲁斯科尔算法求下列图的最小生成树的树权是
A.34
B.35
C.36
D.40
R2-8
给定一组权值1,1,3,4,6,8构造一棵最优二叉树。该最优二叉树的树权是 ,树高是 。
A.53, 4
B.53, 5
C.55, 4
D.55, 5
R2-9
给定一组权值1,2,3,4,5,6,7,8,构造一棵最优三叉树,这棵最优三叉树有( )个内点?树的高度是( ) 。
A.5, 3
B.5, 4
C.4, 4
D.4, 3
R2-10
下面哪个不是下图的边割集?
A {(v 1,v 2),(v 3,v 4)} B {(v 4,v 5),(v 5,v 6)}
C {(v 6,v 7)} D {(v 6,v 7),(v 5,v 6)}
A.C
B.A
C.D
D.B
R2-11
下面哪个图是欧拉图?
A.C
B.A
C.B
D.D
R2-12
设简单图G有12条边. 若G的每个顶点的度都相同,则G的顶点个数至少为:
A.8
B.4
C.3
D.6
R2-13
对于下图,以下哪个不是它的点割集:
A {V 4} B {v 6} C {v 1,v 3} D {v 4,v 5}
A.D
B.B
C.C
D.A
R2-14
现有n个盒子,若每2个盒子里都恰有1个相同颜色的球,每种颜色的球恰好有2个,并放在不同盒子里,请问这n个盒子里的球共有多少种不同的颜色?
A.n(n-1)/2
B.n(n-1)
C.n
D.n*n
R2-15
在有n个顶点的连通图中,其边数是多少?
A.最多有n条
B.最少n 条
C.最多有n-1条
D.最少n-1条
R2-16
设G是连通平面图,G中有6个顶点8条边,则G的面的数目是
A.5
B.6
C.3
D.4
R2-17
设无向图G有16条边,有3个4度结点,4个3度结点,其余顶点的度数均小于等于2,则G中至少有几个顶点?
A.11
B.15
C.14
D.12
R2-18
下面哪个是平面图?
A. K 3,3 ; B. K 5 ; C . K 4 ; D. 彼得森图
A.C
B.D
C.A
D.B
R2-19
图中既是欧拉图又是哈密顿图的是:
A.K10
B.K9
C.K3,3
D.K6