算法竞赛--基础复习(一)

题外话:忙碌了一个学期,结果考试都放到了下个学期。于我个人而言这是没什么影响的,只不过需要提早进行算法竞赛的学习。大二上一直很忙,也没有时间写博客,只能寒假抽个空写个两篇。写这个博客最重要的原因就是方便自己复习之前学过的算法知识,为学更难的算法打下坚实的基础。二来可以督促自己学习,以免荒废了漫长的寒假。 

二分模版

//区间被划分为[l,mid]和[mid+1,r]使用
int bsearch_1(int l, int r)
{
	while (l < r)
	{
		int mid = l + r >> 1;
		if (check(mid)) r = mid;
		else l = mid + 1;
	}  
    return l;
}

//区间被划分为[l,mid-1]和[mid,r]使用
int bsearch_2(int l, int r)
{
	while (l < r)
	{
		int mid = l + r + 1 >> 1;
		if (check(mid)) l = mid;
		else r = mid - 1;
	}
    return l;
}

 上面第一个模板用于寻找左边界,第二个模板用于寻找右边界。使用模板时,先判断本题寻找左边界还是右边界,选取相对应的模板。再思考check函数怎么写,尤其要注意大于等于或者小于等于的问题。

高精度加法模板

#include<iostream>
#include<vector>
#include<string>
using namespace std;

vector<int> add(vector<int>&A, vector<int>&B)
{
	vector<int>C;
	int t = 0; //进位

	for (int i = 0; i < A.size() || i < B.size(); i++)
	{
		if (i < A.size()) t += A[i];
		if (i < B.size()) t += B[i];
		C.push_back(t % 10);
		t /= 10;
	}
	if (t) C.push_back(1);
	return C;
}



int main()
{
	string a, b;
	cin >> a >> b;
	vector<int>A, B;
	for (int i = a.size() - 1; i >= 0; i--)A.push_back(a[i] - '0');
	for (int i = b.size() - 1; i >= 0; i--)B.push_back(b[i] - '0');
	auto C = add(A, B);
	for (int i = C.size()-1; i >= 0; i--)printf("%d", C[i]);
	return 0;
}

熟记模板即可。

二维差分

#include<iostream>
using namespace std;
const int N = 1e3 + 10;

int a[N][N];
int b[N][N];
void insert(int x1, int y1, int x2, int y2, int c)
{
	b[x1][y1] += c;
	b[x2 + 1][y1] -= c;
	b[x1][y2 + 1] -= c;
	b[x2 + 1][y2 + 1] += c;
}
int main()
{
	int n, m, q;
	cin >> n >> m >> q;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			cin >> a[i][j];
			insert(i, j, i, j, a[i][j]);
		}
	}
	while (q--)
	{
		int x1, y1, x2, y2, c;
		cin >> x1 >> y1 >> x2 >> y2 >> c;
		insert(x1, y1, x2, y2, c);
	}

	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
		}
	}
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			cout << b[i][j] << " ";
		}
		cout << endl;
	}
	return 0;
}

差分是前缀和的逆运算,差分求前缀和就是原来的数组。代码中最重要的是insert函数,insert函数一方面用于对b数组的初始化,另一方面用于对原数组的修改。想要输出经过q次修改的数组,只需要对b数组求前缀和。

位运算相关

求一个数的二进制表示

#include<iostream>
using namespace std;
int main()
{
	int n = 10;
	for (int k = 3; k >= 0; k--) cout << (n >> k & 1);
	return 0;
}

求二进制数中1的个数

#include<iostream>
using namespace std;
int lowbit(int x)  //返回x的最后一位1
{
	return x & -x;
}
int main()
{
	int x;
	cin >> x;
	int res = 0;
	while (x)
	{
		x -= lowbit(x);
		res++;
	}
	cout << res << endl;
}

使用lowbit函数可以找到x的最后一位1的位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值